Colombelli Julien, Reynaud Emmanuel G, Stelzer Ernst H K
Light Microscopy Group, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany.
Methods Cell Biol. 2007;82:267-91. doi: 10.1016/S0091-679X(06)82008-X.
Dynamic microscopy of living cells and organisms alone does not reveal the high level of complexity of cellular and subcellular organization. All observable processes rely on the activity of biochemical and biophysical processes and many occur at a physiological equilibrium. Experimentally, it is not trivial to apply a perturbation that targets a specific process without perturbing the overall equilibrium of a cell. Drugs and more recently RNAi certainly have general and undesired effects on cell physiology and metabolism. In particular, they affect the entire cell. Pulsed lasers allow to severe biological tissues with a precision in the range of hundreds of nanometers and to achieve ablation on the level of a single cell or a subcellular compartment. In this chapter, we present an efficient implementation of a picosecond UV-A pulsed laser-based nanosurgery system and review the different mechanisms of ablation that can be achieved at different levels of cellular organization. We discuss the performance of the ablation process in terms of the energy deposited onto the sample and compare our implementation to others recently employed for cellular and subcellular surgery. Above the energy threshold of ionization, we demonstrate how to achieve single-cell ablation through the induction of mechanical perturbation and cavitation in living organisms. Below this threshold, we induce cytoskeleton severing inside live cells. By combining nanosurgery with fast live-imaging fluorescence microscopy, we show how the apparent equilibrium of the cytoskeleton can be perturbed regionally inside a cell.
仅对活细胞和生物体进行动态显微镜观察,并不能揭示细胞和亚细胞组织的高度复杂性。所有可观察到的过程都依赖于生化和生物物理过程的活动,并且许多过程发生在生理平衡状态下。在实验中,在不干扰细胞整体平衡的情况下施加针对特定过程的扰动并非易事。药物以及最近的RNA干扰对细胞生理和代谢肯定会产生普遍且不良的影响。特别是,它们会影响整个细胞。脉冲激光能够以数百纳米的精度切割生物组织,并在单细胞或亚细胞隔室水平上实现消融。在本章中,我们介绍了一种基于皮秒紫外-A脉冲激光的纳米手术系统的高效实施方案,并回顾了在不同细胞组织水平上可实现的不同消融机制。我们根据沉积在样品上的能量来讨论消融过程的性能,并将我们的实施方案与最近用于细胞和亚细胞手术的其他方案进行比较。在电离能量阈值以上,我们展示了如何通过在活生物体中诱导机械扰动和空化来实现单细胞消融。在该阈值以下,我们在活细胞内诱导细胞骨架切断。通过将纳米手术与快速实时成像荧光显微镜相结合,我们展示了细胞骨架的表观平衡如何在细胞内局部受到扰动。