Leucht Philipp, Lam Kentson, Kim Jae-Beom, Mackanos Mark A, Simanovskii Dmitrii M, Longaker Michael T, Contag Christopher H, Schwettman H Alan, Helms Jill A
Department of Surgery, Stanford University, Stanford, CA
Ann Surg. 2007 Jul;246(1):140-50. doi: 10.1097/01.sla.0000258559.07435.b3.
To reveal, on a cellular and molecular level, how skeletal regeneration of a corticotomy is enhanced when using laser-plasma mediated ablation compared with conventional mechanical tissue removal.
Osteotomies are well-known for their most detrimental side effect: thermal damage. This thermal and mechanical trauma to adjacent bone tissue can result in the untoward consequences of cell death and eventually in a delay in healing.
Murine tibial corticotomies were performed using a conventional saw and a Ti:Sapphire plasma-generated laser that removes tissue with minimal thermal damage. Our analyses began 24 hours after injury and proceeded to postsurgical day 6. We investigated aspects of wound repair ranging from vascularization, inflammation, cell proliferation, differentiation, and bone remodeling.
Histology of mouse corticotomy sites uncovered a significant difference in the onset of bone healing; whereas laser corticotomies showed abundant bone matrix deposition at postsurgical day 6, saw corticotomies only exhibited undifferentiated tissue. Our analyses uncovered that cutting bone with a saw caused denaturation of the collagen matrix due to thermal effects. This denatured collagen represented an unfavorable scaffold for subsequent osteoblast attachment, which in turn impeded deposition of a new bony matrix. The matrix degradation induced a prolonged inflammatory reaction at the cut edge to create a surface favorable for osteochondroprogenitor cell attachment. Laser corticotomies were absent of collagen denaturation, therefore osteochondroprogenitor cell attachment was enabled shortly after surgery.
In summary, these data demonstrate that corticotomies performed with Ti:Sapphire lasers are associated with a reduced initial inflammatory response at the injury site leading to accelerated osteochondroprogenitor cell migration, attachment, differentiation, and eventually matrix deposition.
在细胞和分子水平上揭示,与传统机械组织切除相比,使用激光 - 等离子体介导的消融术时皮质切开术的骨骼再生是如何增强的。
截骨术因其最有害的副作用——热损伤而广为人知。这种对相邻骨组织的热和机械创伤会导致细胞死亡的不良后果,并最终导致愈合延迟。
使用传统锯和钛宝石等离子体产生的激光对小鼠胫骨进行皮质切开术,该激光去除组织时热损伤最小。我们的分析在受伤后24小时开始,持续到术后第6天。我们研究了伤口修复的各个方面,包括血管生成、炎症、细胞增殖、分化和骨重塑。
小鼠皮质切开部位的组织学检查发现骨愈合开始时有显著差异;激光皮质切开术在术后第6天显示出大量骨基质沉积,而锯切皮质切开术仅表现为未分化组织。我们的分析发现,用锯切割骨头会因热效应导致胶原基质变性。这种变性的胶原为随后成骨细胞附着提供了不利的支架,进而阻碍了新骨基质的沉积。基质降解在切口边缘引发了长时间的炎症反应,以创造一个有利于骨软骨祖细胞附着的表面。激光皮质切开术不存在胶原变性,因此骨软骨祖细胞在手术后不久就能附着。
总之,这些数据表明,用钛宝石激光进行的皮质切开术与损伤部位初始炎症反应减轻有关,并导致骨软骨祖细胞迁移、附着、分化加速,最终促进基质沉积。