Suppr超能文献

通过定量计算机断层扫描预测皮质骨的力学性能。

Prediction of mechanical properties of cortical bone by quantitative computed tomography.

作者信息

Duchemin L, Bousson V, Raossanaly C, Bergot C, Laredo J D, Skalli W, Mitton D

机构信息

Laboratoire de Biomécanique, ENSAM, Centre National de la Recherche Scientifique/UMR 8005, 151 Boulevard de L'Hôpital, Paris, France.

出版信息

Med Eng Phys. 2008 Apr;30(3):321-8. doi: 10.1016/j.medengphy.2007.04.008. Epub 2007 Jun 26.

Abstract

The relevance of Finite-Element models for hip fracture prediction should be increased by the recent subject-specific methods based on computed tomography (CT-scan), regarding the geometry as well as the material properties. The present study focused on the prediction of subject-specific mechanical parameters of cortical bone (Young's modulus and ultimate strength) from the bone density measured by CT. A total of 46 compression and 46 tension samples from 13 donors (mean age+/-S.D.: 81.8+/-12.7 years) were harvested in the femoral mid-diaphysis and tested until failure. The Young's modulus and ultimate strength were linearly correlated with the bone density measured by CT, for tension as well as compression (0.43<r(2)<0.72, p<0.001). To take into account the remaining uncertainties on the mechanical properties prediction, the standard error of the estimate (S.E.E.) was evaluated in each case (2694-2788MPa for Young's modulus, 13-16MPa for ultimate strength). The significant correlations obtained in the present study and the quantification of the errors will be helpful for the assessment of the cortical mechanical properties from the CT-scan data in order to create subject-specific FE-models.

摘要

基于计算机断层扫描(CT扫描)的近期特定受试者方法,在几何形状和材料特性方面,应提高有限元模型对髋部骨折预测的相关性。本研究聚焦于根据CT测量的骨密度预测皮质骨的特定受试者力学参数(杨氏模量和极限强度)。从13名捐赠者(平均年龄±标准差:81.8±12.7岁)的股骨干中段采集了总共46个压缩样本和46个拉伸样本,并进行测试直至破坏。对于拉伸和压缩情况,杨氏模量和极限强度与CT测量的骨密度呈线性相关(0.43<r²<0.72,p<0.001)。为了考虑力学性能预测中剩余的不确定性,在每种情况下评估估计标准误差(S.E.E.)(杨氏模量为2694 - 2788MPa,极限强度为13 - 16MPa)。本研究中获得的显著相关性以及误差量化将有助于根据CT扫描数据评估皮质力学性能,以创建特定受试者的有限元模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验