Suppr超能文献

通过氮代谢物去阻遏控制维涅兰德固氮菌的转化能力。

Control of transformation competence in Azotobacter vinelandii by nitrogen catabolite derepression.

作者信息

Page W J, Sadoff H L

出版信息

J Bacteriol. 1976 Mar;125(3):1088-95. doi: 10.1128/jb.125.3.1088-1095.1976.

Abstract

Azotobacter vinelandii (ATCC 12837) became competent to be transformed by exogenous deoxyribonucleic acid towards the end of exponential growth. Competence in wild-type and nitrogenase auxotrophic (nif-) strains was repressed by the addition of ammonium salts or urea to the transformation medium. Transformation of wild-type cells and nif- strains was optimal on nitrogen-free or nitrogen-limiting medium, respectively. Transformation of wild-type cells also was enhanced when the transformation medium had low molydbate content. During the development of competence, nitrogen was growth limiting, whereas carbon (glucose) was in excess. Carbon source shift-down was not effective in inducing competence. Shifting glucose-grown wild-type cells to medium containing 0.2% beta-hydroxybutyrate initiated encystment and also induced competence. The addition of glucose to this medium blocked encystment and early competence induction and reduced the transformation frequency to the basal level. Cyclic adenosine 3',5'-monophosphate induced competence in wild-type nitrogen-fixing cells and increased the transformation frequency 1,000-fold over the basal level. Exogenous cyclic adenosine 3',5'-monophosphate however, did not reverse nitrogen repression of competence in ammonia-grown wild-type or nif- strains.

摘要

维涅兰德固氮菌(ATCC 12837)在指数生长后期能够被外源脱氧核糖核酸转化。在转化培养基中添加铵盐或尿素会抑制野生型和固氮酶营养缺陷型(nif-)菌株的感受态。野生型细胞和nif-菌株的转化分别在无氮或氮限制培养基上最为理想。当转化培养基中钼酸盐含量较低时,野生型细胞的转化也会增强。在感受态形成过程中,氮是生长限制因素,而碳(葡萄糖)过量。碳源下调对诱导感受态无效。将在葡萄糖上生长的野生型细胞转移到含有0.2%β-羟基丁酸的培养基中会引发包囊化并诱导感受态。向该培养基中添加葡萄糖会阻止包囊化和早期感受态诱导,并将转化频率降低到基础水平。环腺苷酸3',5'-单磷酸在野生型固氮细胞中诱导感受态,并使转化频率比基础水平提高1000倍。然而,外源环腺苷酸3',5'-单磷酸并不能逆转氨培养的野生型或nif-菌株中感受态的氮抑制。

相似文献

1
Control of transformation competence in Azotobacter vinelandii by nitrogen catabolite derepression.
J Bacteriol. 1976 Mar;125(3):1088-95. doi: 10.1128/jb.125.3.1088-1095.1976.
3
Induction of transformation competence in Azotobacter vinelandii iron-limited cultures.
Can J Microbiol. 1978 Dec;24(12):1590-4. doi: 10.1139/m78-254.
4
Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii.
Proc Natl Acad Sci U S A. 1980 Dec;77(12):7342-6. doi: 10.1073/pnas.77.12.7342.
5
Physiological factors affecting transformation of Azotobacter vinelandii.
J Bacteriol. 1976 Mar;125(3):1080-7. doi: 10.1128/jb.125.3.1080-1087.1976.
6
Nitrogenase in synchronized Azotobacter vinelandii OP.
Can J Microbiol. 1975 Jul;21(7):984-8. doi: 10.1139/m75-145.
7
Selective inactivation of nitrogenase in Azotobacter vinelandii batch cultures.
J Bacteriol. 1976 Oct;128(1):117-22. doi: 10.1128/jb.128.1.117-122.1976.
8
Expression of an alternative nitrogen fixation system in Azotobacter vinelandii.
J Bacteriol. 1982 Jun;150(3):1244-51. doi: 10.1128/jb.150.3.1244-1251.1982.
9
Derepression of nitrogenase in Azotobacter.
Biochem Biophys Res Commun. 1974 Sep 9;60(1):76-80. doi: 10.1016/0006-291x(74)90174-0.
10
Transcriptional Analysis of an Ammonium-Excreting Strain of Azotobacter vinelandii Deregulated for Nitrogen Fixation.
Appl Environ Microbiol. 2017 Sep 29;83(20). doi: 10.1128/AEM.01534-17. Print 2017 Oct 15.

引用本文的文献

1
Mechanisms and Regulation of Extracellular DNA Release and Its Biological Roles in Microbial Communities.
Front Microbiol. 2017 Jul 26;8:1390. doi: 10.3389/fmicb.2017.01390. eCollection 2017.
2
Hypothetical protein Avin_16040 as the S-layer protein of Azotobacter vinelandii and its involvement in plant root surface attachment.
Appl Environ Microbiol. 2015 Nov;81(21):7484-95. doi: 10.1128/AEM.02081-15. Epub 2015 Aug 14.
4
Bacterial gene transfer by natural genetic transformation in the environment.
Microbiol Rev. 1994 Sep;58(3):563-602. doi: 10.1128/mr.58.3.563-602.1994.
5
Transformation of Azotobacter vinelandii with plasmids RP4 (IncP-1 group) and RSF1010 (IncQ group).
J Bacteriol. 1981 Jun;146(3):1154-7. doi: 10.1128/jb.146.3.1154-1157.1981.
6
D-(-)-poly-beta-hydroxybutyrate in membranes of genetically competent bacteria.
J Bacteriol. 1983 Nov;156(2):778-88. doi: 10.1128/jb.156.2.778-788.1983.
7
Characterization of Azotobacter vinelandii deoxyribonucleic acid and folded chromosomes.
J Bacteriol. 1979 Jun;138(3):871-7. doi: 10.1128/jb.138.3.871-877.1979.

本文引用的文献

1
REQUIREMENTS FOR TRANSFORMATION IN BACILLUS SUBTILIS.
J Bacteriol. 1961 May;81(5):741-6. doi: 10.1128/jb.81.5.741-746.1961.
2
REGULATION OF THE TRANSFORMABILITY OF PHEUMOCOCCAL CULTURES BY MACROMOLECULAR CELL PRODUCTS.
Proc Natl Acad Sci U S A. 1964 Mar;51(3):480-7. doi: 10.1073/pnas.51.3.480.
3
TRANSFORMATION OF BACILLUS LICHENIFORMIS.
J Bacteriol. 1964 Mar;87(3):519-26. doi: 10.1128/jb.87.3.519-526.1964.
4
Transformability of Haemophilus influenzae.
J Gen Microbiol. 1962 Nov;29:537-49. doi: 10.1099/00221287-29-3-537.
5
A modified uronic acid carbazole reaction.
Anal Biochem. 1962 Oct;4:330-4. doi: 10.1016/0003-2697(62)90095-7.
6
On the nature of competence of transformable streptococci.
J Gen Microbiol. 1963 Apr;31:125-33. doi: 10.1099/00221287-31-1-125.
7
Physiological and genetic factors affecting transformation of Bacillus subtilis.
J Bacteriol. 1961 May;81(5):823-9. doi: 10.1128/jb.81.5.823-829.1961.
8
Tungstate as an antagonist of molybdate in Azotobacter vinelandii.
Arch Biochem Biophys. 1957 Aug;70(2):585-90. doi: 10.1016/0003-9861(57)90146-7.
9
Trace metal requirements of Azotobacter.
Proc Soc Exp Biol Med. 1956 Dec;93(3):564-7. doi: 10.3181/00379727-93-22820.
10
Encystment and polymer production by Azotobacter vinelandii in the presence of beta-hydroxybutyrate.
J Bacteriol. 1968 Jun;95(6):2336-43. doi: 10.1128/jb.95.6.2336-2343.1968.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验