Dos Santos Kaiany Moreira, de França Serpa Juliana, de Castro Bizerra Viviane, Melo Rafael Leandro Fernandes, Sousa Junior Paulo Gonçalves de, Santos Alexandre Valdilane, da Fonseca Aluísio Marques, Fechine Pierre Basílio Almeida, Lomonaco Diego, Sousa Dos Santos José Cleiton, Martins de Souza Maria Cristiane
Instituto de Engenharia e Desenvolvimento Sustentável - IEDS, Campus das Auroras, Universidade da Integração Internacional da Lusofonia Afro-Brasileira - UNILAB, Rua José Franco de Oliveira, s/n - Zona Rural, Redenção 62790-970, CE, Brazil.
Departamento de Engenharia Metalúrgica e de Materiais, Universidade Federal do Ceará-UFC, Campus do Pici, Bloco 729, Fortaleza CEP 60440-554, CE, Brazil.
Langmuir. 2024 Dec 24;40(51):26835-26851. doi: 10.1021/acs.langmuir.4c02542. Epub 2024 Nov 26.
This research investigated the usefulness of magnetic iron oxide nanoparticles (FeO) as a support to immobilize the lipase Eversa Transform 2.0 (ET 2.0) to obtain an active and stable biocatalyst, easily recoverable from the reaction medium for applications in the production of biodiesel. Biodiesel was an alternative fuel composed mainly of fatty acid esters with strong transesterification and esterification capabilities. The study focused on the esterification of oleic acid with ethanol to synthesize ethyl oleate. Magnetic nanoparticles were prepared by coprecipitation, then activated with glutaraldehyde and functionalized with γ-aminopropyltriethoxysilane (APTES). The optimal conditions for immobilizing ET 2.0 were pH 10, 25 mM sodium carbonate buffer, an enzymatic load of 200 U/g, and 1 h of contact time, obtaining 78% yield and enzymatic activity of 205.9 U/g. Postimmobilization evaluation showed that the immobilized enzyme performed better than its free form. Kinetic studies were conducted under these optimized conditions (2-96 h at 150 rpm and 37 °C). The biocatalyst was tested for the synthesis of ethyl oleate using oleic acid as the substrate and ethanol, achieving a conversion of 88.1%. Subsequent recirculation tests maintained approximately 80% conversion until the fourth cycle, confirming the sustainability of ester production. Molecular docking studies revealed that the binding affinity for the enzyme-docked oil composition was estimated at -5.8 kcal/mol, suggesting that the combination of the substrate and lipase was stable and suitable for esterification.
本研究考察了磁性氧化铁纳米颗粒(FeO)作为载体固定化脂肪酶Eversa Transform 2.0(ET 2.0)以获得一种活性高且稳定的生物催化剂的实用性,该生物催化剂可轻松从反应介质中回收,用于生物柴油生产。生物柴油是一种主要由具有强酯交换和酯化能力的脂肪酸酯组成的替代燃料。该研究聚焦于油酸与乙醇的酯化反应以合成油酸乙酯。通过共沉淀法制备磁性纳米颗粒,然后用戊二醛活化并用γ-氨丙基三乙氧基硅烷(APTES)进行功能化。固定化ET 2.0的最佳条件为pH 10、25 mM碳酸钠缓冲液、酶负载量200 U/g以及接触时间1 h,产率达78%,酶活性为205.9 U/g。固定化后评估表明固定化酶的性能优于其游离形式。在这些优化条件下(150 rpm和37 °C下2 - 96 h)进行了动力学研究。使用油酸作为底物和乙醇对该生物催化剂进行油酸乙酯合成测试,转化率达到88.1%。随后的循环测试在第四个循环之前转化率维持在约80%,证实了酯生产的可持续性。分子对接研究表明,酶与对接的油组合物的结合亲和力估计为-5.8 kcal/mol,表明底物和脂肪酶的组合稳定且适合酯化反应。