Suppr超能文献

肌电信号的相位和张力特性分析:肌电合成以及新型形态学和线性包络方法的比较

Analysis of phasic and tonic electromyographic signal characteristics: electromyographic synthesis and comparison of novel morphological and linear-envelope approaches.

作者信息

Belavý Daniel L, Mehnert Andrew, Wilson Stephen, Richardson Carolyn A

机构信息

School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane QLD 4072, Australia.

出版信息

J Electromyogr Kinesiol. 2009 Feb;19(1):10-21. doi: 10.1016/j.jelekin.2007.02.018. Epub 2007 Jul 12.

Abstract

The pattern of tonic and phasic components in an EMG signal reflects the underlying behaviour of the central nervous system (CNS) in controlling the musculature. One avenue for gaining a better understanding of this behaviour is to seek a quantitative characterisation of these phasic and tonic components. We propose that these signal characteristics can range between unvarying, tonic and intermittent, phasic activation through a continuum of EMG amplitude modulation. In this paper, we present two new algorithms for quantifying amplitude modulation: a linear-envelope approach, and a mathematical morphology approach. In addition we present an algorithm for synthesising EMG signals with known amplitude modulation. The efficacy of the synthesis algorithm is demonstrated using real EMG data. We present an evaluation and comparison of the two algorithms for quantifying amplitude modulation based on synthetic data generated by the proposed synthesis algorithm. The results demonstrate that the EMG synthesis parameters represent 91.9% and 96.2% of the variance of linear-envelopes extracted from lumbo-pelvic muscle EMG signals collected from subjects performing a repetitive-movement task. This depended, however, on the muscle and movement-speed considered (F=4.02, p<0.001). Coefficients of determination between input and output amplitude modulation variables were used to quantify the accuracy of the linear-envelope and morphological signal processing algorithms. The linear-envelope algorithm exhibited higher coefficients of determination than the most accurate morphological approach (and hence greater accuracy, T=8.16, p<0.001). Similarly, the standard deviation of the coefficients of determination was 1.691 times smaller (p<0.001). This signal processing algorithm represents a novel tool for the quantification of amplitude modulation in continuous EMG signals and can be used in the study of CNS motor control of the musculature in repetitive-movement tasks.

摘要

肌电图(EMG)信号中的强直和相位成分模式反映了中枢神经系统(CNS)在控制肌肉组织时的潜在行为。更好地理解这种行为的一个途径是寻求对这些相位和强直成分进行定量表征。我们提出,这些信号特征可以通过EMG幅度调制的连续体,在不变的强直激活和间歇性的相位激活之间变化。在本文中,我们提出了两种用于量化幅度调制的新算法:线性包络法和数学形态学法。此外,我们还提出了一种用于合成具有已知幅度调制的EMG信号的算法。使用真实的EMG数据证明了合成算法的有效性。我们基于所提出的合成算法生成的合成数据,对两种量化幅度调制的算法进行了评估和比较。结果表明,EMG合成参数分别解释了从执行重复运动任务的受试者收集的腰骨盆肌肉EMG信号中提取的线性包络方差的91.9%和96.2%。然而,这取决于所考虑的肌肉和运动速度(F = 4.02,p <

0.001)。输入和输出幅度调制变量之间的决定系数用于量化线性包络和形态信号处理算法的准确性。线性包络算法的决定系数高于最精确的形态学方法(因此具有更高的准确性,T = 8.16,p < 0.001)。同样,决定系数的标准差小1.691倍(p < 0.001)。这种信号处理算法是一种用于量化连续EMG信号中幅度调制的新型工具,可用于研究重复运动任务中CNS对肌肉组织的运动控制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验