Bernander O, Douglas R J, Martin K A, Koch C
Computation and Neural Systems Program, California Institute of Technology, Pasadena 91125.
Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11569-73. doi: 10.1073/pnas.88.24.11569.
The standard one-dimensional Rall cable model assumes that the electrotonic structure of neurons does not change in response to synaptic input. This model is used in a great number of both theoretical and anatomical-physiological structure-function studies. In particular, the membrane time constant, tau m, the somatic input resistance, Rin, and the electrotonic length are used to characterize single cells. However, these studies do not take into account that neurons are embedded in a network of spontaneously active cells. Synapses from these cells will contribute significantly to the membrane conductance, especially if recent evidence of very high specific membrane resistance, Rm = 100 k omega.cm2, is taken into account. We numerically simulated the electrical behavior of an anatomically reconstructed layer V cortical pyramidal cell receiving input from 4000 excitatory and 1000 inhibitory cells firing spontaneously at 0-7 Hz. We found that, over this range of synaptic background activity, tau m and Rin change by a factor of 10 (80-7 msec, 110-14 M omega) and the electrotonic length of the cell changes by a factor of 3. We show that this significantly changes the response of the cell to temporal desynchronized versus temporal synchronized synaptic input distributed throughout the neuron. Thus, the global activity of the network can control how individual cells perform spatial and temporal integration.
标准的一维拉尔电缆模型假定,神经元的电紧张结构不会因突触输入而改变。该模型被大量用于理论以及解剖生理学结构功能研究中。具体而言,膜时间常数τm、体细胞输入电阻Rin和电紧张长度被用来表征单个细胞。然而,这些研究没有考虑到神经元是嵌入在一个自发活动细胞网络中的。来自这些细胞的突触会对膜电导有显著贡献,特别是如果考虑到近期关于非常高的比膜电阻Rm = 100 kΩ·cm²的证据。我们对一个经解剖重建的V层皮质锥体细胞的电行为进行了数值模拟,该细胞接收来自4000个兴奋性细胞和1000个抑制性细胞的输入,这些细胞以0 - 7 Hz的频率自发放电。我们发现,在这个突触背景活动范围内,τm和Rin变化了10倍(80 - 7毫秒,110 - 14 MΩ),细胞的电紧张长度变化了3倍。我们表明,这显著改变了细胞对分布在整个神经元上的时间去同步与时间同步突触输入的反应。因此,网络的全局活动可以控制单个细胞如何进行空间和时间整合。