Zador A, Koch C, Brown T H
Department of Psychology, Yale University, New Haven, CT.
Proc Natl Acad Sci U S A. 1990 Sep;87(17):6718-22. doi: 10.1073/pnas.87.17.6718.
We present a biophysical model of electrical and Ca(2+) dynamics following activation of N-methyl-D-aspartate (NMDA) receptors located on a dendritic spine. The model accounts for much of the phenomenology of the induction of long-term potentiation at a Hebbian synapse in hippocampal region CA1. Computer simulations suggested four important functions of spines in this Ca(2+)-dependent synaptic modification: (i) compartmentalizing transient changes in [Ca(2+)] to just those synapses that satisfy the conjunctive requirement for synaptic modification; (ii) isolating the spine head from changes in the [Ca(2+)] at the dendritic shaft; (iii) amplifying the concentration changes at those synapses; and (iv) increasing the voltage dependence of the processes underlying long term potentiation induction. This proposed role of spines in the regulation of Ca(2+) dynamics contrasts with traditional approaches to spine function that have stressed electronic properties. This model can be used to explore the computational implications of Hebbian synapses.
我们提出了一个位于树突棘上的N-甲基-D-天冬氨酸(NMDA)受体激活后电动力学和Ca(2+)动力学的生物物理模型。该模型解释了海马体CA1区Hebbian突触处长期增强诱导的许多现象学特征。计算机模拟表明,在这种依赖Ca(2+)的突触修饰中,树突棘具有四个重要功能:(i)将[Ca(2+)]的瞬时变化分隔到仅那些满足突触修饰联合要求的突触中;(ii)将树突棘头部与树突轴上[Ca(2+)]的变化隔离开来;(iii)放大那些突触处的浓度变化;以及(iv)增加长期增强诱导基础过程的电压依赖性。树突棘在Ca(2+)动力学调节中的这一作用与强调电学性质的传统树突棘功能研究方法形成对比。该模型可用于探索Hebbian突触的计算意义。