Ferenz Nick P, Wadsworth Patricia
Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA.
Mol Biol Cell. 2007 Oct;18(10):3993-4002. doi: 10.1091/mbc.e07-05-0420. Epub 2007 Aug 1.
In higher eukaryotic cells, microtubules within metaphase and anaphase spindles undergo poleward flux, the slow, poleward movement of tubulin subunits through the spindle microtubule lattice. Although a number of studies have documented this phenomenon across a wide range of model systems, the possibility of poleward flux before nuclear envelope breakdown (NEB) has not been examined. Using a mammalian cell line expressing photoactivatable green fluorescent protein (GFP)-tubulin, we observe microtubule motion, both toward and away from centrosomes, at a wide range of rates (0.5-4.5 microm/min) in prophase cells. Rapid microtubule motion in both directions is dynein dependent. In contrast, slow microtubule motion, which occurs at rates consistent with metaphase flux, is insensitive to inhibition of dynein but sensitive to perturbation of Eg5 and Kif2a, two proteins with previously documented roles in flux. Our results demonstrate that microtubules in prophase cells are unexpectedly dynamic and that a subpopulation of these microtubules shows motion that is consistent with flux. We propose that the marked reduction in rate and directionality of microtubule motion from prophase to metaphase results from changes in microtubule organization during spindle formation.
在高等真核细胞中,处于中期和后期纺锤体中的微管会发生向极流动,即微管蛋白亚基通过纺锤体微管晶格缓慢地向极移动。尽管许多研究已在广泛的模型系统中记录了这一现象,但核膜破裂(NEB)之前向极流动的可能性尚未得到研究。利用表达光活化绿色荧光蛋白(GFP)-微管蛋白的哺乳动物细胞系,我们观察到前期细胞中微管向中心体方向以及远离中心体方向的运动,其速度范围很广(0.5 - 4.5微米/分钟)。两个方向上的快速微管运动均依赖动力蛋白。相比之下,以与中期流动一致的速度发生的缓慢微管运动对动力蛋白的抑制不敏感,但对Eg5和Kif2a(两种先前已证明在流动中起作用的蛋白质)的扰动敏感。我们的结果表明,前期细胞中的微管出人意料地具有动态性,并且这些微管中的一个亚群表现出与流动一致的运动。我们提出,从前期到中期微管运动速度和方向性的显著降低是由于纺锤体形成过程中微管组织的变化所致。