Cameron Lisa A, Yang Ge, Cimini Daniela, Canman Julie C, Kisurina-Evgenieva Olga, Khodjakov Alexey, Danuser Gaudenz, Salmon E D
Department of Biology, University of North Carolina at Chapel Hill, 27599, USA.
J Cell Biol. 2006 Apr 24;173(2):173-9. doi: 10.1083/jcb.200601075.
Forces in the spindle that align and segregate chromosomes produce a steady poleward flux of kinetochore microtubules (MTs [kMTs]) in higher eukaryotes. In several nonmammalian systems, flux is driven by the tetrameric kinesin Eg5 (kinesin 5), which slides antiparallel MTs toward their minus ends. However, we find that the inhibition of kinesin 5 in mammalian cultured cells (PtK1) results in only minor reduction in the rate of kMT flux from approximately 0.7 to approximately 0.5 microm/min, the same rate measured in monopolar spindles that lack antiparallel MTs. These data reveal that the majority of poleward flux of kMTs in these cells is not driven by Eg5. Instead, we favor a polar "pulling-in" mechanism in which a depolymerase localized at kinetochore fiber minus ends makes a major contribution to poleward flux. One candidate, Kif2a (kinesin 13), was detected at minus ends of fluxing kinetochore fibers. Kif2a remains associated with the ends of K fibers upon disruption of the spindle by dynein/dynactin inhibition, and these K fibers flux.
在高等真核生物中,纺锤体中使染色体排列和分离的力会产生动粒微管(kMTs)稳定的向极流动。在一些非哺乳动物系统中,这种流动由四聚体驱动蛋白Eg5(驱动蛋白5)推动,它使反向平行的微管向其负端滑动。然而,我们发现,在哺乳动物培养细胞(PtK1)中抑制驱动蛋白5只会使kMT流动速率略有降低,从约0.7微米/分钟降至约0.5微米/分钟,这与在缺乏反向平行微管的单极纺锤体中测得的速率相同。这些数据表明,这些细胞中kMT向极流动的大部分并非由Eg5驱动。相反,我们支持一种极性“拉入”机制,即定位于动粒纤维负端的解聚酶对向极流动起主要作用。一个候选蛋白Kif2a(驱动蛋白13)在流动的动粒纤维负端被检测到。在用动力蛋白/动力蛋白激活蛋白抑制纺锤体后,Kif2a仍与K纤维的末端结合,并且这些K纤维仍在流动。