Suppr超能文献

基于国际非电离辐射防护委员会(ICNIRP)指南规定的射频远场能量对人体核心体温升高的时域有限差分(FDTD)分析。

FDTD analysis of human body-core temperature elevation due to RF far-field energy prescribed in the ICNIRP guidelines.

作者信息

Hirata Akimasa, Asano Takayuki, Fujiwara Osamu

机构信息

Department of Computer Science and Engineering, Nagoya Institute of Technology, Japan.

出版信息

Phys Med Biol. 2007 Aug 21;52(16):5013-23. doi: 10.1088/0031-9155/52/16/020. Epub 2007 Aug 1.

Abstract

This study investigated the relationship between the specific absorption rate and temperature elevation in an anatomically-based model named NORMAN for exposure to radio-frequency far fields in the ICNIRP guidelines (1998 Health Phys. 74 494-522). The finite-difference time-domain method is used for analyzing the electromagnetic absorption and temperature elevation in NORMAN. In order to consider the variability of human thermoregulation, parameters for sweating are derived and incorporated into a conventional sweating formula. First, we investigated the effect of blood temperature variation modeling on body-core temperature. The computational results show that the modeling of blood temperature variation was the dominant factor influencing the body-core temperature. This is because the temperature in the inner tissues is elevated via the circulation of blood whose temperature was elevated due to EM absorption. Even at different frequencies, the body-core temperature elevation at an identical whole-body average specific absorption rate (SAR) was almost the same, suggesting the effectiveness of the whole-body average SAR as a measure in the ICNIRP guidelines. Next, we discussed the effect of sweating on the temperature elevation and thermal time constant of blood. The variability of temperature elevation caused by the sweating rate was found to be 30%. The blood temperature elevation at the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1) is 0.25 degrees C even for a low sweating rate. The thermal time constant of blood temperature elevation was 23 min and 52 min for a man with a lower and a higher sweating rate, respectively, which is longer than the average time of the SAR in the ICNIRP guidelines. Thus, the whole-body average SAR required for blood temperature elevation of 1 degrees C was 4.5 W kg(-1) in the model of a human with the lower sweating coefficients for 60 min exposure. From a comparison of this value with the basic restriction in the ICNIRP guidelines of 0.4 W kg(-1), the safety factor was 11.

摘要

本研究在一个名为NORMAN的基于人体解剖学的模型中,调查了国际非电离辐射防护委员会(ICNIRP)指南(1998年,《健康物理学》第74卷,第494 - 522页)中规定的射频远场暴露下比吸收率与体温升高之间的关系。采用时域有限差分法分析NORMAN模型中的电磁吸收和体温升高情况。为了考虑人体体温调节的变异性,推导了出汗参数并将其纳入传统的出汗公式。首先,我们研究了血液温度变化建模对体核温度的影响。计算结果表明,血液温度变化建模是影响体核温度的主要因素。这是因为内部组织的温度通过血液循环升高,而血液温度因电磁吸收而升高。即使在不同频率下,相同全身平均比吸收率(SAR)时的体核温度升高几乎相同,这表明全身平均SAR作为ICNIRP指南中的一种测量方法是有效的。接下来,我们讨论了出汗对血液温度升高和热时间常数的影响。发现出汗速率引起的温度升高变异性为30%。即使出汗速率较低,在ICNIRP指南基本限值0.4 W kg⁻¹时的血液温度升高也为0.25℃。出汗速率较低和较高的男性,血液温度升高的热时间常数分别为23分钟和52分钟,这比ICNIRP指南中SAR的平均时间要长。因此,在出汗系数较低的人体模型中,暴露60分钟使血液温度升高1℃所需的全身平均SAR为4.5 W kg⁻¹。将该值与ICNIRP指南中的基本限值0.4 W kg⁻¹进行比较,安全系数为11。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验