Ivanov Alexey O, Kantorovich Sofia S, Reznikov Evgeniy N, Holm Christian, Pshenichnikov Alexander F, Lebedev Alexander V, Chremos Alexandros, Camp Philip J
Department of Mathematical Physics, Urals State University, 51 Lenin Avenue, Ekaterinburg 620083, Russia.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jun;75(6 Pt 1):061405. doi: 10.1103/PhysRevE.75.061405. Epub 2007 Jun 28.
Experimental magnetization curves for a polydisperse ferrofluid at various concentrations are examined using analytical theories and computer simulations with the aim of establishing a robust method for obtaining the magnetic-core diameter distribution function p(x). Theoretical expressions are fitted to the experimental data to yield the parameters of p(x). It is shown that the majority of available theories yield results that depend strongly on the ferrofluid concentration, even though the magnetic composition should be fixed. The sole exception is the second-order modified mean-field (MMF2) theory of Ivanov and Kuznetsova [Phys. Rev. E 64, 041405 (2001)] which yields consistent results over the full experimental range of ferrofluid concentration. To check for consistency, extensive molecular dynamics and Monte Carlo simulations are performed on systems with discretized versions of p(x) corresponding as closely as possible to that of the real ferrofluid. Essentially perfect agreement between experiment, theory, and computer simulation is demonstrated. In addition, the MMF2 theory provides excellent predictions for the initial susceptibility measured in simulations.
利用解析理论和计算机模拟研究了多分散铁磁流体在不同浓度下的实验磁化曲线,目的是建立一种可靠的方法来获得磁芯直径分布函数p(x)。将理论表达式拟合到实验数据中,以得到p(x)的参数。结果表明,尽管磁性成分应保持固定,但大多数现有理论得出的结果强烈依赖于铁磁流体的浓度。唯一的例外是伊万诺夫和库兹涅佐娃的二阶修正平均场(MMF2)理论[《物理评论E》64, 041405 (2001)],该理论在铁磁流体浓度的整个实验范围内都能给出一致的结果。为了检验一致性,对具有与真实铁磁流体尽可能接近的离散化p(x)版本的系统进行了广泛的分子动力学和蒙特卡罗模拟。实验、理论和计算机模拟之间显示出基本完美的一致性。此外,MMF2理论对模拟中测量的初始磁化率提供了出色的预测。