Suppr超能文献

利用并行独立成分分析对同步脑电图-功能磁共振成像进行分离

Unmixing concurrent EEG-fMRI with parallel independent component analysis.

作者信息

Eichele Tom, Calhoun Vince D, Moosmann Matthias, Specht Karsten, Jongsma Marijtje L A, Quiroga Rodrigo Quian, Nordby Helge, Hugdahl Kenneth

机构信息

Department of Biological and Medical Psychology, University of Bergen, Jonas Lies Vei 91, 5011 Bergen, Norway.

出版信息

Int J Psychophysiol. 2008 Mar;67(3):222-34. doi: 10.1016/j.ijpsycho.2007.04.010. Epub 2007 Aug 3.

Abstract

Concurrent event-related EEG-fMRI recordings pick up volume-conducted and hemodynamically convoluted signals from latent neural sources that are spatially and temporally mixed across the brain, i.e. the observed data in both modalities represent multiple, simultaneously active, regionally overlapping neuronal mass responses. This mixing process decreases the sensitivity of voxel-by-voxel prediction of hemodynamic activation by the EEG when multiple sources contribute to either the predictor and/or the response variables. In order to address this problem, we used independent component analysis (ICA) to recover maps from the fMRI and timecourses from the EEG, and matched these components across the modalities by correlating their trial-to-trial modulation. The analysis was implemented as a group-level ICA that extracts a single set of components from the data and directly allows for population inferences about consistently expressed function-relevant spatiotemporal responses. We illustrate the utility of this method by extracting a previously undetected but relevant EEG-fMRI component from a concurrent auditory target detection experiment.

摘要

同步事件相关脑电图-功能磁共振成像记录从潜在神经源采集容积传导和血流动力学卷积信号,这些信号在大脑中进行时空混合,即两种模式下观察到的数据均代表多个同时活跃、区域重叠的神经元群体反应。当多个源对预测变量和/或响应变量有贡献时,这种混合过程会降低脑电图对血流动力学激活进行逐体素预测的敏感性。为了解决这个问题,我们使用独立成分分析(ICA)从功能磁共振成像中恢复图谱,从脑电图中恢复时间进程,并通过关联它们的逐次试验调制来跨模式匹配这些成分。该分析作为一种组水平ICA来实施,它从数据中提取单组成分,并直接允许对一致表达的功能相关时空反应进行总体推断。我们通过从同步听觉目标检测实验中提取一个先前未检测到但相关的脑电图-功能磁共振成像成分来说明该方法的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5d1/2649878/0b344b732890/nihms42659f1.jpg

相似文献

8
Analysis of fMRI data by blind separation into independent spatial components.通过盲分离为独立空间成分对功能磁共振成像数据进行分析。
Hum Brain Mapp. 1998;6(3):160-88. doi: 10.1002/(SICI)1097-0193(1998)6:3<160::AID-HBM5>3.0.CO;2-1.

引用本文的文献

1
Two methodologies for brain signal analysis derived from Freeman Neurodynamics.源自弗里曼神经动力学的两种脑信号分析方法。
Front Syst Neurosci. 2025 Apr 15;19:1570231. doi: 10.3389/fnsys.2025.1570231. eCollection 2025.
2
A revisit of the amygdala theory of autism: Twenty years after.自闭症的杏仁核理论再探:二十年后。
Neuropsychologia. 2023 May 3;183:108519. doi: 10.1016/j.neuropsychologia.2023.108519. Epub 2023 Feb 17.

本文引用的文献

6
Imaging human EEG dynamics using independent component analysis.使用独立成分分析对人类脑电图动力学进行成像。
Neurosci Biobehav Rev. 2006;30(6):808-22. doi: 10.1016/j.neubiorev.2006.06.007. Epub 2006 Aug 14.
8
Tracking pattern learning with single-trial event-related potentials.基于单次试验事件相关电位的追踪模式学习
Clin Neurophysiol. 2006 Sep;117(9):1957-73. doi: 10.1016/j.clinph.2006.05.012. Epub 2006 Jul 18.
10
Unmixing fMRI with independent component analysis.使用独立成分分析对功能磁共振成像进行分离
IEEE Eng Med Biol Mag. 2006 Mar-Apr;25(2):79-90. doi: 10.1109/memb.2006.1607672.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验