Eichele Tom, Calhoun Vince D, Moosmann Matthias, Specht Karsten, Jongsma Marijtje L A, Quiroga Rodrigo Quian, Nordby Helge, Hugdahl Kenneth
Department of Biological and Medical Psychology, University of Bergen, Jonas Lies Vei 91, 5011 Bergen, Norway.
Int J Psychophysiol. 2008 Mar;67(3):222-34. doi: 10.1016/j.ijpsycho.2007.04.010. Epub 2007 Aug 3.
Concurrent event-related EEG-fMRI recordings pick up volume-conducted and hemodynamically convoluted signals from latent neural sources that are spatially and temporally mixed across the brain, i.e. the observed data in both modalities represent multiple, simultaneously active, regionally overlapping neuronal mass responses. This mixing process decreases the sensitivity of voxel-by-voxel prediction of hemodynamic activation by the EEG when multiple sources contribute to either the predictor and/or the response variables. In order to address this problem, we used independent component analysis (ICA) to recover maps from the fMRI and timecourses from the EEG, and matched these components across the modalities by correlating their trial-to-trial modulation. The analysis was implemented as a group-level ICA that extracts a single set of components from the data and directly allows for population inferences about consistently expressed function-relevant spatiotemporal responses. We illustrate the utility of this method by extracting a previously undetected but relevant EEG-fMRI component from a concurrent auditory target detection experiment.
同步事件相关脑电图-功能磁共振成像记录从潜在神经源采集容积传导和血流动力学卷积信号,这些信号在大脑中进行时空混合,即两种模式下观察到的数据均代表多个同时活跃、区域重叠的神经元群体反应。当多个源对预测变量和/或响应变量有贡献时,这种混合过程会降低脑电图对血流动力学激活进行逐体素预测的敏感性。为了解决这个问题,我们使用独立成分分析(ICA)从功能磁共振成像中恢复图谱,从脑电图中恢复时间进程,并通过关联它们的逐次试验调制来跨模式匹配这些成分。该分析作为一种组水平ICA来实施,它从数据中提取单组成分,并直接允许对一致表达的功能相关时空反应进行总体推断。我们通过从同步听觉目标检测实验中提取一个先前未检测到但相关的脑电图-功能磁共振成像成分来说明该方法的实用性。