Moosmann Matthias, Eichele Tom, Nordby Helge, Hugdahl Kenneth, Calhoun Vince D
Department of Biological and Medical Psychology, University of Bergen, Jonas Lies Vei 91, 5011 Bergen, Norway.
Int J Psychophysiol. 2008 Mar;67(3):212-21. doi: 10.1016/j.ijpsycho.2007.05.016. Epub 2007 Jul 12.
An optimized scheme for the fusion of electroencephalography and event related potentials with functional magnetic resonance imaging (BOLD-fMRI) data should simultaneously assess all available electrophysiologic and hemodynamic information in a common data space. In doing so, it should be possible to identify features of latent neural sources whose trial-to-trial dynamics are jointly reflected in both modalities. We present a joint independent component analysis (jICA) model for analysis of simultaneous single trial EEG-fMRI measurements from multiple subjects. We outline the general idea underlying the jICA approach and present results from simulated data under realistic noise conditions. Our results indicate that this approach is a feasible and physiologically plausible data-driven way to achieve spatiotemporal mapping of event related responses in the human brain.
一种用于脑电图与事件相关电位和功能磁共振成像(血氧水平依赖性功能磁共振成像,BOLD-fMRI)数据融合的优化方案,应在一个公共数据空间中同时评估所有可用的电生理和血流动力学信息。这样做时,应该能够识别潜在神经源的特征,其逐次试验动态在两种模态中都有共同体现。我们提出了一种联合独立成分分析(jICA)模型,用于分析来自多个受试者的同步单次试验脑电图 - fMRI测量数据。我们概述了jICA方法背后的总体思路,并展示了在现实噪声条件下模拟数据的结果。我们的结果表明,这种方法是一种可行且在生理上合理的数据驱动方式,可实现人类大脑中事件相关反应的时空映射。