Goulielmakis E, Yakovlev V S, Cavalieri A L, Uiberacker M, Pervak V, Apolonski A, Kienberger R, Kleineberg U, Krausz F
Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany.
Science. 2007 Aug 10;317(5839):769-75. doi: 10.1126/science.1142855.
Electrons emit light, carry electric current, and bind atoms together to form molecules. Insight into and control of their atomic-scale motion are the key to understanding the functioning of biological systems, developing efficient sources of x-ray light, and speeding up electronics. Capturing and steering this electron motion require attosecond resolution and control, respectively (1 attosecond = 10(-18) seconds). A recent revolution in technology has afforded these capabilities: Controlled light waves can steer electrons inside and around atoms, marking the birth of lightwave electronics. Isolated attosecond pulses, well reproduced and fully characterized, demonstrate the power of the new technology. Controlled few-cycle light waves and synchronized attosecond pulses constitute its key tools. We review the current state of lightwave electronics and highlight some future directions.
电子能发射光、传导电流,并将原子结合在一起形成分子。深入了解并控制电子在原子尺度上的运动是理解生物系统功能、开发高效的X射线光源以及加速电子学发展的关键。捕获并操控这种电子运动分别需要阿秒级别的分辨率和控制能力(1阿秒 = 10的 -18次方秒)。最近的技术革命赋予了这些能力:可控光波能够在原子内部和周围操控电子,标志着光波电子学的诞生。孤立的阿秒脉冲,可良好再现且得到充分表征,展现了这项新技术的威力。可控的少周期光波和同步阿秒脉冲构成了其关键工具。我们回顾了光波电子学的当前状态,并突出了一些未来发展方向。