Schlecht Maria T, Knorr Matthias, Schmid Christoph P, Malzer Stefan, Huber Rupert, Weber Heiko B
Chair for Applied Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), D-91058 Erlangen, Germany.
Department of Physics, University of Regensburg, D-93040 Regensburg, Germany.
Sci Adv. 2022 Jun 3;8(22):eabj5014. doi: 10.1126/sciadv.abj5014.
The speed of an active electronic semiconductor device is limited by timescale, i.e., the time required for its charging and discharging. To circumvent this ubiquitous limitation of conventional electronics, we investigate diodes under intense mid-infrared light-field pulses. We choose epitaxial graphene on silicon carbide as a metal/semiconductor pair, acting as an ultrarobust and almost-transparent Schottky diode. The usually dominant forward direction is suppressed, but a characteristic signal occurs in reverse bias. For its theoretical description, we consider tunneling through the light-field-modulated Schottky barrier, complemented by a dynamical accumulation correction. On the basis only of the DC parametrization of the diode, the model provides a consistent and accurate description of the experimentally observed infrared phenomena. This allows the conclusion that cycle-by-cycle dynamics determines rectification. As the chosen materials have proven capabilities for transistors, circuits, and even a full logic, we see a way to establish light-field-driven electronics with rapidly increasing functionality.
有源电子半导体器件的速度受时间尺度限制,即其充电和放电所需的时间。为了规避传统电子学这一普遍存在的限制,我们研究了在强中红外光场脉冲作用下的二极管。我们选择碳化硅上的外延石墨烯作为金属/半导体对,用作超坚固且几乎透明的肖特基二极管。通常占主导的正向被抑制,但在反向偏置时会出现一个特征信号。对于其理论描述,我们考虑通过光场调制的肖特基势垒的隧穿,并辅以动态积累校正。仅基于二极管的直流参数化,该模型对实验观察到的红外现象提供了一致且准确的描述。由此可以得出结论,逐周期动力学决定了整流。由于所选材料已被证明具备用于晶体管、电路甚至完整逻辑的能力,我们看到了一条建立功能迅速增加的光场驱动电子学的途径。