Wu Hao, Xu Jun, Pang Zhiping P, Ge Weihong, Kim Kevin J, Blanchi Bruno, Chen Caifu, Südhof Thomas C, Sun Yi E
Mental Retardation Research Center, David Geffen School of Medicine at University of California, Los Angeles, Neuroscience Research Building Room 351, 635 Charles E. Young Drive South, Los Angeles, CA 90095, USA.
Proc Natl Acad Sci U S A. 2007 Aug 21;104(34):13821-6. doi: 10.1073/pnas.0706199104. Epub 2007 Aug 10.
The self-renewal and differentiation potential of human embryonic stem cells (hESCs) suggests that hESCs could be used for regenerative medicine, especially for restoring neuronal functions in brain diseases. However, the functional properties of neurons derived from hESC are largely unknown. Moreover, because hESCs were derived under diverse conditions, the possibility arises that neurons derived from different hESC lines exhibit distinct properties, but this possibility remains unexplored. To address these issues, we developed a protocol that allows stepwise generation from hESCs of cultures composed of approximately 70-80% human neurons that exhibit spontaneous synaptic network activity. Comparison of neurons derived from the well characterized HSF1 and HSF6 hESC lines revealed that HSF1- but not HSF6-derived neurons exhibit forebrain properties. Accordingly, HSF1-derived neurons initially form primarily GABAergic synaptic networks, whereas HSF6-derived neurons initially form glutamatergic networks. microRNA profiling revealed significant expression differences between the two hESC lines, suggesting that microRNAs may influence their distinct differentiation properties. These observations indicate that although both HSF1 and HSF6 hESCs differentiate into functional neurons, the two hESC lines exhibit distinct differentiation potentials, suggesting that they are preprogrammed. Information on hESC line-specific differentiation biases is crucial for neural stem cell therapy and establishment of novel disease models using hESCs.
人类胚胎干细胞(hESCs)的自我更新和分化潜能表明,hESCs可用于再生医学,尤其是用于恢复脑部疾病中的神经元功能。然而,源自hESC的神经元的功能特性在很大程度上尚不清楚。此外,由于hESCs是在不同条件下获得的,因此有可能源自不同hESC系的神经元表现出不同的特性,但这种可能性仍未得到探索。为了解决这些问题,我们开发了一种方案,该方案允许从hESCs逐步生成由约70 - 80%表现出自发突触网络活动的人类神经元组成的培养物。对源自特征明确的HSF1和HSF6 hESC系的神经元进行比较发现,源自HSF1而非HSF6的神经元表现出前脑特性。因此,源自HSF1的神经元最初主要形成GABA能突触网络,而源自HSF6的神经元最初形成谷氨酸能网络。微小RNA分析揭示了这两个hESC系之间存在显著的表达差异,表明微小RNA可能影响它们不同的分化特性。这些观察结果表明,尽管HSF1和HSF6 hESCs都能分化为功能性神经元,但这两个hESC系表现出不同的分化潜能,表明它们是预先编程的。关于hESC系特异性分化偏向的信息对于神经干细胞治疗以及使用hESCs建立新型疾病模型至关重要。