Caiazza Nicky C, Lies Douglas P, Newman Dianne K
Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA.
Appl Environ Microbiol. 2007 Oct;73(19):6150-8. doi: 10.1128/AEM.02830-06. Epub 2007 Aug 10.
Anoxygenic phototrophic Fe(II) oxidation is usually considered to be a lithoautotrophic metabolism that contributes to primary production in Fe-based ecosystems. In this study, we employed Rhodobacter capsulatus SB1003 as a model organism to test the hypothesis that phototrophic Fe(II) oxidation can be coupled to organic carbon acquisition. R. capsulatus SB1003 oxidized Fe(II) under anoxic conditions in a light-dependent manner, but it failed to grow lithoautotrophically on soluble Fe(II). When the strain was provided with Fe(II)-citrate, however, growth was observed that was dependent upon microbially catalyzed Fe(II) oxidation, resulting in the formation of Fe(III)-citrate. Subsequent photochemical breakdown of Fe(III)-citrate yielded acetoacetic acid that supported growth in the light but not the dark. The deletion of genes (RRC00247 and RRC00248) that encode homologs of atoA and atoD, required for acetoacetic acid utilization, severely impaired the ability of R. capsulatus SB1003 to grow on Fe(II)-citrate. The growth yield achieved by R. capsulatus SB1003 in the presence of citrate cannot be explained by lithoautotrophic growth on Fe(II) enabled by indirect effects of the ligand [such as altering the thermodynamics of Fe(II) oxidation or preventing cell encrustation]. Together, these results demonstrate that R. capsulatus SB1003 grows photoheterotrophically on Fe(II)-citrate. Nitrilotriacetic acid also supported light-dependent growth on Fe(II), suggesting that Fe(II) oxidation may be a general mechanism whereby some Fe(II)-oxidizing bacteria mine otherwise inaccessible organic carbon sources.
无氧光合铁(II)氧化通常被认为是一种化能自养代谢,它有助于铁基生态系统中的初级生产。在本研究中,我们使用荚膜红细菌SB1003作为模式生物,以检验光合铁(II)氧化可与有机碳获取相耦合的假设。荚膜红细菌SB1003在缺氧条件下以光依赖的方式氧化铁(II),但它无法在可溶性铁(II)上进行化能自养生长。然而,当为该菌株提供柠檬酸铁(II)时,观察到其生长依赖于微生物催化的铁(II)氧化,导致形成柠檬酸铁(III)。随后柠檬酸铁(III)的光化学分解产生乙酰乙酸,其在光照下而非黑暗中支持生长。编码乙酰乙酸利用所需的atoA和atoD同源物的基因(RRC00247和RRC00248)的缺失,严重损害了荚膜红细菌SB1003在柠檬酸铁(II)上生长的能力。荚膜红细菌SB1003在柠檬酸存在下实现的生长产量,不能通过配体的间接作用使铁(II)进行化能自养生长来解释[例如改变铁(II)氧化的热力学或防止细胞结壳]。总之,这些结果表明荚膜红细菌SB1003在柠檬酸铁(II)上进行光异养生长。次氮基三乙酸也支持在铁(II)上的光依赖生长,这表明铁(II)氧化可能是一些铁(II)氧化细菌挖掘原本无法获取的有机碳源的一般机制。