Suppr超能文献

光合铁(II)氧化促进荚膜红细菌SB1003获取有机碳。

Phototrophic Fe(II) oxidation promotes organic carbon acquisition by Rhodobacter capsulatus SB1003.

作者信息

Caiazza Nicky C, Lies Douglas P, Newman Dianne K

机构信息

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

Appl Environ Microbiol. 2007 Oct;73(19):6150-8. doi: 10.1128/AEM.02830-06. Epub 2007 Aug 10.

Abstract

Anoxygenic phototrophic Fe(II) oxidation is usually considered to be a lithoautotrophic metabolism that contributes to primary production in Fe-based ecosystems. In this study, we employed Rhodobacter capsulatus SB1003 as a model organism to test the hypothesis that phototrophic Fe(II) oxidation can be coupled to organic carbon acquisition. R. capsulatus SB1003 oxidized Fe(II) under anoxic conditions in a light-dependent manner, but it failed to grow lithoautotrophically on soluble Fe(II). When the strain was provided with Fe(II)-citrate, however, growth was observed that was dependent upon microbially catalyzed Fe(II) oxidation, resulting in the formation of Fe(III)-citrate. Subsequent photochemical breakdown of Fe(III)-citrate yielded acetoacetic acid that supported growth in the light but not the dark. The deletion of genes (RRC00247 and RRC00248) that encode homologs of atoA and atoD, required for acetoacetic acid utilization, severely impaired the ability of R. capsulatus SB1003 to grow on Fe(II)-citrate. The growth yield achieved by R. capsulatus SB1003 in the presence of citrate cannot be explained by lithoautotrophic growth on Fe(II) enabled by indirect effects of the ligand [such as altering the thermodynamics of Fe(II) oxidation or preventing cell encrustation]. Together, these results demonstrate that R. capsulatus SB1003 grows photoheterotrophically on Fe(II)-citrate. Nitrilotriacetic acid also supported light-dependent growth on Fe(II), suggesting that Fe(II) oxidation may be a general mechanism whereby some Fe(II)-oxidizing bacteria mine otherwise inaccessible organic carbon sources.

摘要

无氧光合铁(II)氧化通常被认为是一种化能自养代谢,它有助于铁基生态系统中的初级生产。在本研究中,我们使用荚膜红细菌SB1003作为模式生物,以检验光合铁(II)氧化可与有机碳获取相耦合的假设。荚膜红细菌SB1003在缺氧条件下以光依赖的方式氧化铁(II),但它无法在可溶性铁(II)上进行化能自养生长。然而,当为该菌株提供柠檬酸铁(II)时,观察到其生长依赖于微生物催化的铁(II)氧化,导致形成柠檬酸铁(III)。随后柠檬酸铁(III)的光化学分解产生乙酰乙酸,其在光照下而非黑暗中支持生长。编码乙酰乙酸利用所需的atoA和atoD同源物的基因(RRC00247和RRC00248)的缺失,严重损害了荚膜红细菌SB1003在柠檬酸铁(II)上生长的能力。荚膜红细菌SB1003在柠檬酸存在下实现的生长产量,不能通过配体的间接作用使铁(II)进行化能自养生长来解释[例如改变铁(II)氧化的热力学或防止细胞结壳]。总之,这些结果表明荚膜红细菌SB1003在柠檬酸铁(II)上进行光异养生长。次氮基三乙酸也支持在铁(II)上的光依赖生长,这表明铁(II)氧化可能是一些铁(II)氧化细菌挖掘原本无法获取的有机碳源的一般机制。

相似文献

1
Phototrophic Fe(II) oxidation promotes organic carbon acquisition by Rhodobacter capsulatus SB1003.
Appl Environ Microbiol. 2007 Oct;73(19):6150-8. doi: 10.1128/AEM.02830-06. Epub 2007 Aug 10.
2
Photomixotrophic growth of Rhodobacter capsulatus SB1003 on ferrous iron.
Geobiology. 2012 May;10(3):216-22. doi: 10.1111/j.1472-4669.2011.00313.x. Epub 2011 Dec 29.
3
Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.
Appl Environ Microbiol. 2019 Apr 4;85(8). doi: 10.1128/AEM.02826-18. Print 2019 Apr 15.
4
Rhodobacter capsulatus catalyzes light-dependent Fe(II) oxidation under anaerobic conditions as a potential detoxification mechanism.
Appl Environ Microbiol. 2009 Nov;75(21):6639-46. doi: 10.1128/AEM.00054-09. Epub 2009 Aug 28.
5
The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003.
J Bacteriol. 2007 Mar;189(5):1774-82. doi: 10.1128/JB.01395-06. Epub 2006 Dec 22.
6
Anaerobic nitrate-dependent iron(II) bio-oxidation by a novel lithoautotrophic betaproteobacterium, strain 2002.
Appl Environ Microbiol. 2006 Jan;72(1):686-94. doi: 10.1128/AEM.72.1.686-694.2006.
7
Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism.
Appl Environ Microbiol. 1994 Dec;60(12):4517-26. doi: 10.1128/aem.60.12.4517-4526.1994.
8
Proteome Response of a Metabolically Flexible Anoxygenic Phototroph to Fe(II) Oxidation.
Appl Environ Microbiol. 2018 Aug 1;84(16). doi: 10.1128/AEM.01166-18. Print 2018 Aug 15.
10
Anaerobic microbial Fe(II) oxidation and Fe(III) reduction in coastal marine sediments controlled by organic carbon content.
Environ Microbiol. 2016 Sep;18(9):3159-74. doi: 10.1111/1462-2920.13387. Epub 2016 Jun 27.

引用本文的文献

1
Predatory bacteria prevent the proliferation of intraocular and fluoroquinolone-resistant .
Microbiology (Reading). 2024 Feb;170(2). doi: 10.1099/mic.0.001433.
2
PioABC-Dependent Fe(II) Oxidation during Photoheterotrophic Growth on an Oxidized Carbon Substrate Increases Growth Yield.
Appl Environ Microbiol. 2022 Aug 9;88(15):e0097422. doi: 10.1128/aem.00974-22. Epub 2022 Jul 18.
3
Blowing epithelial cell bubbles with GumB: ShlA-family pore-forming toxins induce blebbing and rapid cellular death in corneal epithelial cells.
PLoS Pathog. 2019 Jun 20;15(6):e1007825. doi: 10.1371/journal.ppat.1007825. eCollection 2019 Jun.
5
Cryptic Cycling of Complexes Containing Fe(III) and Organic Matter by Phototrophic Fe(II)-Oxidizing Bacteria.
Appl Environ Microbiol. 2019 Apr 4;85(8). doi: 10.1128/AEM.02826-18. Print 2019 Apr 15.
6
Photoferrotrophy: Remains of an Ancient Photosynthesis in Modern Environments.
Front Microbiol. 2017 Mar 21;8:323. doi: 10.3389/fmicb.2017.00323. eCollection 2017.
7
Iron homeostasis in the genus.
Adv Bot Res. 2013;66. doi: 10.1016/B978-0-12-397923-0.00010-2.
8
Photomixotrophic growth of Rhodobacter capsulatus SB1003 on ferrous iron.
Geobiology. 2012 May;10(3):216-22. doi: 10.1111/j.1472-4669.2011.00313.x. Epub 2011 Dec 29.
9
Rhodobacter capsulatus catalyzes light-dependent Fe(II) oxidation under anaerobic conditions as a potential detoxification mechanism.
Appl Environ Microbiol. 2009 Nov;75(21):6639-46. doi: 10.1128/AEM.00054-09. Epub 2009 Aug 28.
10
New yeast recombineering tools for bacteria.
Plasmid. 2009 Sep;62(2):88-97. doi: 10.1016/j.plasmid.2009.05.002. Epub 2009 May 27.

本文引用的文献

1
Dissimilatory iron(III) reduction by .
Microbiology (Reading). 1996 Apr;142(4):765-774. doi: 10.1099/00221287-142-4-765.
2
Evidence for equilibrium iron isotope fractionation by nitrate-reducing iron(II)-oxidizing bacteria.
Geochim Cosmochim Acta. 2010 May 10;74(10):2826-2842. doi: 10.1016/j.gca.2010.02.017.
3
The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003.
J Bacteriol. 2007 Mar;189(5):1774-82. doi: 10.1128/JB.01395-06. Epub 2006 Dec 22.
4
Early anaerobic metabolisms.
Philos Trans R Soc Lond B Biol Sci. 2006 Oct 29;361(1474):1819-34; discussion 1835-6. doi: 10.1098/rstb.2006.1906.
5
Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction.
Nat Rev Microbiol. 2006 Oct;4(10):752-64. doi: 10.1038/nrmicro1490.
6
Photochemistry of organic iron(III) complexing ligands in oceanic systems.
Photochem Photobiol. 2006 Nov-Dec;82(6):1505-16. doi: 10.1562/2006-06-16-IR-935.
7
Photoreactivity of iron(III)-aerobactin: photoproduct structure and iron(III) coordination.
Inorg Chem. 2006 Jul 24;45(15):6028-33. doi: 10.1021/ic0604967.
8
Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from gram-negative bacteria.
Appl Environ Microbiol. 2006 Jul;72(7):5027-36. doi: 10.1128/AEM.00682-06.
9
Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp. SP18.
J Biol Inorg Chem. 2006 Jul;11(5):633-41. doi: 10.1007/s00775-006-0112-y. Epub 2006 May 20.
10
Thinking about the evolution of photosynthesis.
Photosynth Res. 2004;80(1-3):373-86. doi: 10.1023/B:PRES.0000030457.06495.83.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验