Hsu Sze-Bi, Hsieh Ying-Hen
Department of Mathematics, National Tsing-Hua University, Hsinchu, Taiwan.
Bull Math Biol. 2008 Jan;70(1):134-55. doi: 10.1007/s11538-007-9245-6. Epub 2007 Aug 15.
We propose a compartmental disease transmission model with an asymptomatic (or subclinical) infective class to study the role of asymptomatic infection in the transmission dynamics of infectious diseases with asymptomatic infectives, e.g., influenza. Analytical results are obtained using the respective ratios of susceptible, exposed (incubating), and asymptomatic classes to the clinical symptomatic infective class. Conditions are given for bistability of equilibria to occur, where trajectories with distinct initial values could result in either a major outbreak where the disease spreads to the whole population or a lesser outbreak where some members of the population remain uninfected. This dynamic behavior did not arise in a SARS model without asymptomatic infective class studied by Hsu and Hsieh (SIAM J. Appl. Math. 66(2), 627-647, 2006). Hence, this illustrates that depending on the initial states, control of a disease outbreak with asymptomatic infections may involve more than simply reducing the reproduction number. Moreover, the presence of asymptomatic infections could result in either a positive or negative impact on the outbreak, depending on different sets of conditions on the parameters, as illustrated with numerical simulations. Biological interpretations of the analytical and numerical results are also given.
我们提出了一个具有无症状(或亚临床)感染类别的疾病传播 compartmental 模型,以研究无症状感染在具有无症状感染者的传染病传播动态中的作用,例如流感。利用易感、暴露(潜伏)和无症状类别与临床有症状感染类别各自的比例获得了分析结果。给出了平衡点出现双稳性的条件,其中具有不同初始值的轨迹可能导致疾病传播至整个人口的大爆发,或者导致部分人口未被感染的小爆发。这种动态行为在 Hsu 和 Hsieh(《工业与应用数学学会应用数学杂志》66(2),627 - 647,2006)研究的没有无症状感染类别的 SARS 模型中并未出现。因此,这表明根据初始状态,控制有无症状感染的疾病爆发可能不仅仅涉及简单地降低繁殖数。此外,如数值模拟所示,无症状感染的存在可能会对爆发产生正面或负面影响,这取决于参数的不同条件集。还给出了分析和数值结果的生物学解释。