Suppr超能文献

美国大流行性流感的缓解策略。

Mitigation strategies for pandemic influenza in the United States.

作者信息

Germann Timothy C, Kadau Kai, Longini Ira M, Macken Catherine A

机构信息

Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5935-40. doi: 10.1073/pnas.0601266103. Epub 2006 Apr 3.

Abstract

Recent human deaths due to infection by highly pathogenic (H5N1) avian influenza A virus have raised the specter of a devastating pandemic like that of 1917-1918, should this avian virus evolve to become readily transmissible among humans. We introduce and use a large-scale stochastic simulation model to investigate the spread of a pandemic strain of influenza virus through the U.S. population of 281 million individuals for R(0) (the basic reproductive number) from 1.6 to 2.4. We model the impact that a variety of levels and combinations of influenza antiviral agents, vaccines, and modified social mobility (including school closure and travel restrictions) have on the timing and magnitude of this spread. Our simulations demonstrate that, in a highly mobile population, restricting travel after an outbreak is detected is likely to delay slightly the time course of the outbreak without impacting the eventual number ill. For R(0) < 1.9, our model suggests that the rapid production and distribution of vaccines, even if poorly matched to circulating strains, could significantly slow disease spread and limit the number ill to <10% of the population, particularly if children are preferentially vaccinated. Alternatively, the aggressive deployment of several million courses of influenza antiviral agents in a targeted prophylaxis strategy may contain a nascent outbreak with low R(0), provided adequate contact tracing and distribution capacities exist. For higher R(0), we predict that multiple strategies in combination (involving both social and medical interventions) will be required to achieve similar limits on illness rates.

摘要

近期,高致病性甲型流感病毒(H5N1)感染导致的人类死亡事件引发了人们对1917 - 1918年那样毁灭性大流行的担忧,倘若这种禽流感病毒进化到能够轻易在人际间传播的话。我们引入并使用了一个大规模随机模拟模型,来研究一种流感病毒大流行毒株在美国2.81亿人口中的传播情况,其中基本再生数R(0)取值范围为1.6至2.4。我们模拟了不同水平和组合的流感抗病毒药物、疫苗以及改变后的社会流动性(包括学校关闭和旅行限制)对疫情传播的时间和规模产生的影响。我们的模拟结果表明,在人口流动性高的情况下,在检测到疫情爆发后限制旅行可能只会略微延迟疫情的发展进程,而不会影响最终患病的人数。对于R(0) < 1.9,我们的模型表明,即使疫苗与流行毒株的匹配度不佳,但疫苗的快速生产和分发仍可显著减缓疾病传播,并将患病数量限制在人口的10%以内,特别是如果优先为儿童接种疫苗的话。或者,在有足够的接触者追踪和分发能力的情况下,在有针对性的预防策略中大规模部署数百万疗程的流感抗病毒药物,可能会控制住R(0)较低的新出现疫情。对于更高的R(0),我们预测需要综合多种策略(包括社会和医疗干预)才能对发病率实现类似的控制。

相似文献

1
Mitigation strategies for pandemic influenza in the United States.
Proc Natl Acad Sci U S A. 2006 Apr 11;103(15):5935-40. doi: 10.1073/pnas.0601266103. Epub 2006 Apr 3.
2
Containing pandemic influenza at the source.
Science. 2005 Aug 12;309(5737):1083-7. doi: 10.1126/science.1115717. Epub 2005 Aug 3.
3
H5N1 Avian influenza: preventive and therapeutic strategies against a pandemic.
Annu Rev Med. 2010;61:187-98. doi: 10.1146/annurev.med.050908.132031.
4
Strategies for containing an emerging influenza pandemic in Southeast Asia.
Nature. 2005 Sep 8;437(7056):209-14. doi: 10.1038/nature04017. Epub 2005 Aug 3.
5
Highly pathogenic H5N1 avian influenza virus: cause of the next pandemic?
Comp Immunol Microbiol Infect Dis. 2009 Jul;32(4):287-300. doi: 10.1016/j.cimid.2008.01.003.
6
Vaccines for pandemic influenza.
Emerg Infect Dis. 2006 Jan;12(1):66-72. doi: 10.3201/eid1201.051147.
7
Avian influenza: preparing for a pandemic.
Am Fam Physician. 2006 Sep 1;74(5):783-90.
8
Strategies for mitigating an influenza pandemic.
Nature. 2006 Jul 27;442(7101):448-52. doi: 10.1038/nature04795. Epub 2006 Apr 26.
9
[Pandemic and prepandemic H5N1 influenza vaccines: a 2009 update].
Med Sci (Paris). 2009 Aug-Sep;25(8-9):719-25. doi: 10.1051/medsci/2009258-9719.
10
Are we ready for pandemic influenza H5N1?
Expert Rev Vaccines. 2005 Apr;4(2):151-5. doi: 10.1586/14760584.4.2.151.

引用本文的文献

1
Multi-scale phylodynamic modelling of rapid punctuated pathogen evolution.
PLoS Comput Biol. 2025 Jul 14;21(7):e1013295. doi: 10.1371/journal.pcbi.1013295. eCollection 2025 Jul.
2
Control measures during the COVID-19 outbreak reduced the transmission of hand, foot, and mouth disease.
J Saf Sci Resil. 2021 Jun;2(2):63-68. doi: 10.1016/j.jnlssr.2021.06.002. Epub 2021 Jun 11.
4
Dynamics of an epidemic controlled by isolation and quarantine: A probability-based deterministic model.
Infect Dis Model. 2025 Mar 18;10(3):813-839. doi: 10.1016/j.idm.2025.03.007. eCollection 2025 Sep.
5
BharatSim: An agent-based modelling framework for India.
PLoS Comput Biol. 2024 Dec 30;20(12):e1012682. doi: 10.1371/journal.pcbi.1012682. eCollection 2024 Dec.
6
The effectiveness of intervention measures on MERS-CoV transmission by using the contact networks reconstructed from link prediction data.
Front Public Health. 2024 May 17;12:1386495. doi: 10.3389/fpubh.2024.1386495. eCollection 2024.
8
Welfare costs of travel reductions within the United States due to COVID-19.
Reg Sci Policy Prac. 2021 Nov;13(Suppl 1):18-31. doi: 10.1111/rsp3.12440. Epub 2021 Jun 17.
9
Generating synthetic population for simulating the spatiotemporal dynamics of epidemics.
PLoS Comput Biol. 2024 Feb 12;20(2):e1011810. doi: 10.1371/journal.pcbi.1011810. eCollection 2024 Feb.
10
TRACE-Omicron: Policy Counterfactuals to Inform Mitigation of COVID-19 Spread in the United States.
Adv Theory Simul. 2023 Jul;6(7). doi: 10.1002/adts.202300147. Epub 2023 Apr 28.

本文引用的文献

1
Characterization of the reconstructed 1918 Spanish influenza pandemic virus.
Science. 2005 Oct 7;310(5745):77-80. doi: 10.1126/science.1119392.
2
Avian influenza A (H5N1) infection in humans.
N Engl J Med. 2005 Sep 29;353(13):1374-85. doi: 10.1056/NEJMra052211.
3
Neuraminidase inhibitors for influenza.
N Engl J Med. 2005 Sep 29;353(13):1363-73. doi: 10.1056/NEJMra050740.
4
Identifying pediatric age groups for influenza vaccination using a real-time regional surveillance system.
Am J Epidemiol. 2005 Oct 1;162(7):686-93. doi: 10.1093/aje/kwi257. Epub 2005 Aug 17.
5
Strategies for containing an emerging influenza pandemic in Southeast Asia.
Nature. 2005 Sep 8;437(7056):209-14. doi: 10.1038/nature04017. Epub 2005 Aug 3.
6
Containing pandemic influenza at the source.
Science. 2005 Aug 12;309(5737):1083-7. doi: 10.1126/science.1115717. Epub 2005 Aug 3.
8
Strategy for distribution of influenza vaccine to high-risk groups and children.
Am J Epidemiol. 2005 Feb 15;161(4):303-6. doi: 10.1093/aje/kwi053.
9
Public health. Will vaccines be available for the next influenza pandemic?
Science. 2004 Dec 24;306(5705):2195-6. doi: 10.1126/science.1108165.
10
Transmissibility of 1918 pandemic influenza.
Nature. 2004 Dec 16;432(7019):904-6. doi: 10.1038/nature03063.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验