Suppr超能文献

癫痫中的多模态数据整合

Multimodality data integration in epilepsy.

作者信息

Muzik Otto, Chugani Diane C, Zou Guangyu, Hua Jing, Lu Yi, Lu Shiyong, Asano Eishi, Chugani Harry T

机构信息

Carman and Ann Adams Department of Pediatrics, Children's Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI 48201, USA.

出版信息

Int J Biomed Imaging. 2007;2007:13963. doi: 10.1155/2007/13963.

Abstract

An important goal of software development in the medical field is the design of methods which are able to integrate information obtained from various imaging and nonimaging modalities into a cohesive framework in order to understand the results of qualitatively different measurements in a larger context. Moreover, it is essential to assess the various features of the data quantitatively so that relationships in anatomical and functional domains between complementing modalities can be expressed mathematically. This paper presents a clinically feasible software environment for the quantitative assessment of the relationship among biochemical functions as assessed by PET imaging and electrophysiological parameters derived from intracranial EEG. Based on the developed software tools, quantitative results obtained from individual modalities can be merged into a data structure allowing a consistent framework for advanced data mining techniques and 3D visualization. Moreover, an effort was made to derive quantitative variables (such as the spatial proximity index, SPI) characterizing the relationship between complementing modalities on a more generic level as a prerequisite for efficient data mining strategies. We describe the implementation of this software environment in twelve children (mean age 5.2 +/- 4.3 years) with medically intractable partial epilepsy who underwent both high-resolution structural MR and functional PET imaging. Our experiments demonstrate that our approach will lead to a better understanding of the mechanisms of epileptogenesis and might ultimately have an impact on treatment. Moreover, our software environment holds promise to be useful in many other neurological disorders, where integration of multimodality data is crucial for a better understanding of the underlying disease mechanisms.

摘要

医学领域软件开发的一个重要目标是设计能够将从各种成像和非成像模态获得的信息整合到一个连贯框架中的方法,以便在更广阔的背景下理解性质不同的测量结果。此外,定量评估数据的各种特征至关重要,这样互补模态之间在解剖学和功能领域的关系就可以用数学方式表达。本文提出了一个临床可行的软件环境,用于定量评估正电子发射断层显像(PET)成像评估的生化功能与颅内脑电图(iEEG)导出的电生理参数之间的关系。基于开发的软件工具,从各个模态获得的定量结果可以合并到一个数据结构中,为先进的数据挖掘技术和三维可视化提供一个一致的框架。此外,还努力在更通用的层面上导出表征互补模态之间关系的定量变量(如空间邻近指数,SPI),作为高效数据挖掘策略的前提条件。我们描述了该软件环境在12名患有药物难治性局灶性癫痫的儿童(平均年龄5.2±4.3岁)中的实施情况,这些儿童接受了高分辨率结构磁共振成像(MR)和功能PET成像。我们的实验表明,我们的方法将有助于更好地理解癫痫发生的机制,并可能最终对治疗产生影响。此外,我们的软件环境有望在许多其他神经系统疾病中发挥作用,在这些疾病中,多模态数据的整合对于更好地理解潜在疾病机制至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c748/1940316/19ec3574659e/IJBI2007-13963.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验