Suppr超能文献

广泛的染色体重排使低毒力的都柏林念珠菌的核型与毒力强的白色念珠菌有所区别。

Extensive chromosome rearrangements distinguish the karyotype of the hypovirulent species Candida dubliniensis from the virulent Candida albicans.

作者信息

Magee B B, Sanchez Melissa D, Saunders David, Harris David, Berriman M, Magee P T

机构信息

Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA.

出版信息

Fungal Genet Biol. 2008 Mar;45(3):338-50. doi: 10.1016/j.fgb.2007.07.004. Epub 2007 Jul 20.

Abstract

Candida dubliniensis and Candida albicans, the most common human fungal pathogen, have most of the same genes and high sequence similarity, but C. dubliniensis is less virulent. C. albicans causes both mucosal and hematogenously disseminated disease, C. dubliniensis mostly mucosal infections. Pulse-field electrophoresis, genomic restriction enzyme digests, Southern blotting, and the emerging sequence from the Wellcome Trust Sanger Institute were used to determine the karyotype of C. dubliniensis type strain CD36. Three chromosomes have two intact homologues. A translocation in the rDNA repeat on chromosome R exchanges telomere-proximal regions of R and chromosome 5. Translocations involving the remaining chromosomes occur at the Major Repeat Sequence. CD36 lacks an MRS on chromosome R but has one on 3. Of six other C. dubliniensis strains, no two had the same electrophoretic karyotype. Despite extensive chromosome rearrangements, karyotypic differences between C. dubliniensis and C. albicans are unlikely to affect gene expression. Karyotypic instability may account for the diminished pathogenicity of C. dubliniensis.

摘要

都柏林念珠菌和白色念珠菌是最常见的人类真菌病原体,它们拥有大多数相同的基因且序列相似度很高,但都柏林念珠菌的毒力较低。白色念珠菌可引发黏膜感染和血行播散性疾病,而都柏林念珠菌主要引起黏膜感染。采用脉冲场凝胶电泳、基因组限制性内切酶消化、Southern印迹法以及威康信托桑格研究所新出现的测序技术来确定都柏林念珠菌标准菌株CD36的核型。三条染色体各有两个完整的同源染色体。R染色体上核糖体DNA重复序列发生易位,交换了R染色体和5号染色体的端粒近端区域。涉及其余染色体的易位发生在主要重复序列处。CD36菌株在R染色体上缺乏主要重复序列,但在3号染色体上有一个。在其他六株都柏林念珠菌菌株中,没有两株具有相同的电泳核型。尽管存在广泛的染色体重排,但都柏林念珠菌和白色念珠菌之间的核型差异不太可能影响基因表达。核型不稳定性可能是都柏林念珠菌致病性降低的原因。

相似文献

5
A novel group I intron in Candida dubliniensis is homologous to a Candida albicans intron.
Gene. 1996 Nov 21;180(1-2):189-96. doi: 10.1016/s0378-1119(96)00453-2.
8
Identification of CARE-2-negative Candida albicans isolates as Candida dubliniensis.
Mycoses. 1999 Apr;42(1-2):29-32. doi: 10.1046/j.1439-0507.1999.00259.x.
9
Candida dubliniensis: phylogeny and putative virulence factors.
Microbiology (Reading). 1998 Apr;144 ( Pt 4):829-838. doi: 10.1099/00221287-144-4-829.

引用本文的文献

1
Exploring the Biology, Virulence, and General Aspects of .
Infect Drug Resist. 2024 Dec 21;17:5755-5773. doi: 10.2147/IDR.S497862. eCollection 2024.
2
Candida glabrata Biofilms: How Far Have We Come?
J Fungi (Basel). 2017 Mar 1;3(1):11. doi: 10.3390/jof3010011.
3
Methods of Candida dubliniensis identification and its occurrence in human clinical material.
Folia Microbiol (Praha). 2017 Sep;62(5):401-408. doi: 10.1007/s12223-017-0510-2. Epub 2017 May 17.
4
Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis.
Eukaryot Cell. 2015 Dec;14(12):1186-202. doi: 10.1128/EC.00146-15. Epub 2015 Oct 2.
5
Candida glabrata: a review of its features and resistance.
Eur J Clin Microbiol Infect Dis. 2014 May;33(5):673-88. doi: 10.1007/s10096-013-2009-3. Epub 2013 Nov 19.
6
A stable hybrid containing haploid genomes of two obligate diploid Candida species.
Eukaryot Cell. 2013 Aug;12(8):1061-71. doi: 10.1128/EC.00002-13. Epub 2013 May 24.
8
Haploinsufficiency and the sex chromosomes from yeasts to humans.
BMC Biol. 2011 Feb 28;9:15. doi: 10.1186/1741-7007-9-15.
9
Genomic plasticity of the human fungal pathogen Candida albicans.
Eukaryot Cell. 2010 Jul;9(7):991-1008. doi: 10.1128/EC.00060-10. Epub 2010 May 21.
10
Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans.
Genome Res. 2009 Dec;19(12):2231-44. doi: 10.1101/gr.097501.109. Epub 2009 Sep 10.

本文引用的文献

2
Effect of the major repeat sequence on mitotic recombination in Candida albicans.
Genetics. 2006 Dec;174(4):1737-44. doi: 10.1534/genetics.106.063271. Epub 2006 Oct 8.
3
Aneuploidy and isochromosome formation in drug-resistant Candida albicans.
Science. 2006 Jul 21;313(5785):367-70. doi: 10.1126/science.1128242.
4
The changing epidemiology of invasive fungal infections: new threats.
Int J Antimicrob Agents. 2006 Jun;27 Suppl 1:3-6. doi: 10.1016/j.ijantimicag.2006.03.006. Epub 2006 May 16.
5
A human-curated annotation of the Candida albicans genome.
PLoS Genet. 2005 Jul;1(1):36-57. doi: 10.1371/journal.pgen.0010001. Epub 2005 Jun 17.
6
Comparative genome hybridization reveals widespread aneuploidy in Candida albicans laboratory strains.
Mol Microbiol. 2005 Mar;55(5):1553-65. doi: 10.1111/j.1365-2958.2005.04492.x.
7
Through a glass opaquely: the biological significance of mating in Candida albicans.
Curr Opin Microbiol. 2004 Dec;7(6):661-5. doi: 10.1016/j.mib.2004.10.003.
9
The closely related species Candida albicans and Candida dubliniensis can mate.
Eukaryot Cell. 2004 Aug;3(4):1015-27. doi: 10.1128/EC.3.4.1015-1027.2004.
10
The diploid genome sequence of Candida albicans.
Proc Natl Acad Sci U S A. 2004 May 11;101(19):7329-34. doi: 10.1073/pnas.0401648101. Epub 2004 May 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验