Saez-Rodriguez Julio, Simeoni Luca, Lindquist Jonathan A, Hemenway Rebecca, Bommhardt Ursula, Arndt Boerge, Haus Utz-Uwe, Weismantel Robert, Gilles Ernst D, Klamt Steffen, Schraven Burkhart
Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
PLoS Comput Biol. 2007 Aug;3(8):e163. doi: 10.1371/journal.pcbi.0030163. Epub 2007 Jul 5.
Cellular decisions are determined by complex molecular interaction networks. Large-scale signaling networks are currently being reconstructed, but the kinetic parameters and quantitative data that would allow for dynamic modeling are still scarce. Therefore, computational studies based upon the structure of these networks are of great interest. Here, a methodology relying on a logical formalism is applied to the functional analysis of the complex signaling network governing the activation of T cells via the T cell receptor, the CD4/CD8 co-receptors, and the accessory signaling receptor CD28. Our large-scale Boolean model, which comprises 94 nodes and 123 interactions and is based upon well-established qualitative knowledge from primary T cells, reveals important structural features (e.g., feedback loops and network-wide dependencies) and recapitulates the global behavior of this network for an array of published data on T cell activation in wild-type and knock-out conditions. More importantly, the model predicted unexpected signaling events after antibody-mediated perturbation of CD28 and after genetic knockout of the kinase Fyn that were subsequently experimentally validated. Finally, we show that the logical model reveals key elements and potential failure modes in network functioning and provides candidates for missing links. In summary, our large-scale logical model for T cell activation proved to be a promising in silico tool, and it inspires immunologists to ask new questions. We think that it holds valuable potential in foreseeing the effects of drugs and network modifications.
细胞决策由复杂的分子相互作用网络决定。目前正在重建大规模信号网络,但用于动态建模的动力学参数和定量数据仍然匮乏。因此,基于这些网络结构的计算研究备受关注。在此,一种基于逻辑形式主义的方法被应用于对通过T细胞受体、CD4/CD8共受体和辅助信号受体CD28控制T细胞激活的复杂信号网络的功能分析。我们的大规模布尔模型包含94个节点和123个相互作用,基于来自原代T细胞的成熟定性知识,揭示了重要的结构特征(如反馈回路和全网络依赖性),并概括了该网络在野生型和基因敲除条件下一系列已发表的T细胞激活数据的全局行为。更重要的是,该模型预测了抗体介导的CD28扰动后以及激酶Fyn基因敲除后意外的信号事件,随后这些事件得到了实验验证。最后,我们表明逻辑模型揭示了网络功能中的关键要素和潜在故障模式,并提供了缺失环节的候选者。总之,我们的T细胞激活大规模逻辑模型被证明是一种有前途的计算机工具,它激发免疫学家提出新问题。我们认为它在预测药物和网络修饰的效果方面具有宝贵的潜力。