Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.
Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, USA.
NPJ Syst Biol Appl. 2023 Jul 31;9(1):36. doi: 10.1038/s41540-023-00297-2.
T cells play a key role in a variety of immune responses, including infection and cancer. Upon stimulation, naïve CD8+ T cells proliferate and differentiate into a variety of memory and effector cell types; however, failure to clear antigens causes prolonged stimulation of CD8+ T cells, ultimately leading to T cell exhaustion (TCE). The functional and phenotypic changes that occur during CD8+ T cell differentiation are well characterized, but the underlying gene expression state changes are not completely understood. Here, we utilize a previously published data-driven Boolean model of gene regulatory interactions shown to mediate TCE. Our network analysis and modeling reveal the final gene expression states that correspond to TCE, along with the sequence of gene expression patterns that give rise to those final states. With a model that predicts the changes in gene expression that lead to TCE, we could evaluate strategies to inhibit the exhausted state. Overall, we demonstrate that a common pathway model of CD8+ T cell gene regulatory interactions can provide insights into the transcriptional changes underlying the evolution of cell states in TCE.
T 细胞在多种免疫反应中发挥关键作用,包括感染和癌症。在受到刺激后,幼稚 CD8+T 细胞增殖并分化为多种记忆和效应细胞类型;然而,未能清除抗原会导致 CD8+T 细胞的持续刺激,最终导致 T 细胞耗竭(TCE)。在 CD8+T 细胞分化过程中发生的功能和表型变化已经得到很好的描述,但潜在的基因表达状态变化尚不完全清楚。在这里,我们利用先前发表的基于数据的基因调控相互作用布尔模型,该模型被证明可以介导 TCE。我们的网络分析和建模揭示了与 TCE 相对应的最终基因表达状态,以及导致这些最终状态的基因表达模式的顺序。通过预测导致 TCE 的基因表达变化的模型,我们可以评估抑制衰竭状态的策略。总体而言,我们证明了 CD8+T 细胞基因调控相互作用的通用途径模型可以深入了解 TCE 中细胞状态演变的转录变化。