Suppr超能文献

大肠杆菌中的细胞形态动力学

Cell shape dynamics in Escherichia coli.

作者信息

Reshes Galina, Vanounou Sharon, Fishov Itzhak, Feingold Mario

机构信息

Department of Physics, Ben Gurion University, Beer Sheva, Israel.

出版信息

Biophys J. 2008 Jan 1;94(1):251-64. doi: 10.1529/biophysj.107.104398. Epub 2007 Aug 31.

Abstract

Bacteria are the simplest living organisms. In particular, Escherichia coli has been extensively studied and it has become one of the standard model systems in microbiology. However, optical microscopy studies of single E. coli have been limited by its small size, approximately 1 x 3 microm, not much larger than the optical resolution, approximately 0.25 microm. As a result, not enough quantitative dynamical information on the life cycle of single E. coli is presently available. We suggest that, by careful analysis of images from phase contrast and fluorescence time-lapse microscopy, this limitation can be bypassed. For example, we show that applying this approach to monitoring morphogenesis in individual E. coli leads to a simple, quantitative description of this process. First, we find the time when the formation of the septum starts, tau(c). It occurs much earlier than the time when the constriction can be directly observed by phase contrast. Second, we find that the growth law of single cells is more likely bilinear/trilinear than exponential. This is further supported by the relations that hold between the corresponding growth rates. These methods could be further extended to study the dynamics of cell components, e.g., the nucleoid and the Z-ring.

摘要

细菌是最简单的生物。特别是,大肠杆菌已得到广泛研究,并成为微生物学中的标准模型系统之一。然而,对单个大肠杆菌的光学显微镜研究受到其小尺寸的限制,其大小约为1×3微米,仅略大于光学分辨率(约0.25微米)。因此,目前尚无足够关于单个大肠杆菌生命周期的定量动态信息。我们认为,通过仔细分析相差显微镜和荧光延时显微镜的图像,可以绕过这一限制。例如,我们表明将此方法应用于监测单个大肠杆菌中的形态发生可得出对该过程的简单定量描述。首先,我们找到隔膜开始形成的时间,即τ(c)。它比通过相差显微镜可直接观察到缢缩的时间要早得多。其次,我们发现单细胞的生长规律更可能是双线性/三线性而非指数型。相应生长速率之间的关系进一步支持了这一点。这些方法可进一步扩展用于研究细胞成分的动态变化,例如类核和Z环。

相似文献

1
Cell shape dynamics in Escherichia coli.
Biophys J. 2008 Jan 1;94(1):251-64. doi: 10.1529/biophysj.107.104398. Epub 2007 Aug 31.
3
Shape of nonseptated Escherichia coli is asymmetric.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Jun;77(6 Pt 1):061902. doi: 10.1103/PhysRevE.77.061902. Epub 2008 Jun 4.
4
Genomewide phenotypic analysis of growth, cell morphogenesis, and cell cycle events in .
Mol Syst Biol. 2018 Jun 25;14(6):e7573. doi: 10.15252/msb.20177573.
5
Timing of Z-ring localization in Escherichia coli.
Phys Biol. 2011 Dec;8(6):066003. doi: 10.1088/1478-3975/8/6/066003. Epub 2011 Oct 21.
6
Distinguishing different modes of growth using single-cell data.
Elife. 2021 Dec 2;10:e72565. doi: 10.7554/eLife.72565.
7
Evidence for divisome localization mechanisms independent of the Min system and SlmA in Escherichia coli.
PLoS Genet. 2014 Aug 7;10(8):e1004504. doi: 10.1371/journal.pgen.1004504. eCollection 2014 Aug.
8
Timing the start of division in E. coli: a single-cell study.
Phys Biol. 2008 Nov 7;5(4):046001. doi: 10.1088/1478-3975/5/4/046001.
10
Robust surface-to-mass coupling and turgor-dependent cell width determine bacterial dry-mass density.
Proc Natl Acad Sci U S A. 2021 Aug 10;118(32). doi: 10.1073/pnas.2021416118.

引用本文的文献

1
Cyclo-stationary distributions of mRNA and Protein counts for random cell division times.
bioRxiv. 2025 Jun 8:2025.06.06.658238. doi: 10.1101/2025.06.06.658238.
2
Monitoring phage infection and lysis of surface-immobilized bacteria by QCM-D.
Anal Bioanal Chem. 2025 Apr;417(10):2143-2153. doi: 10.1007/s00216-025-05803-5. Epub 2025 Feb 25.
4
Genome concentration limits cell growth and modulates proteome composition in .
Elife. 2024 Dec 23;13:RP97465. doi: 10.7554/eLife.97465.
5
Quantitative microbiology with widefield microscopy: navigating optical artefacts for accurate interpretations.
Npj Imaging. 2024;2(1):26. doi: 10.1038/s44303-024-00024-4. Epub 2024 Sep 2.
6
Elasto-inertial microfluidic separation of microspheres with submicron resolution at high-throughput.
Microsyst Nanoeng. 2024 Jan 22;10:15. doi: 10.1038/s41378-023-00633-w. eCollection 2024.
7
Energy allocation theory for bacterial growth control in and out of steady state.
bioRxiv. 2024 Jan 10:2024.01.09.574890. doi: 10.1101/2024.01.09.574890.
8
Role of the Bacterial Amyloid-like Hfq in Fluoroquinolone Fluxes.
Microorganisms. 2023 Dec 28;12(1):53. doi: 10.3390/microorganisms12010053.
9
Salicyl-AApicolamide Foldameric Peptides Exhibit Quorum Sensing Inhibition of (PA14).
ACS Omega. 2023 Aug 8;8(33):30349-30358. doi: 10.1021/acsomega.3c03404. eCollection 2023 Aug 22.

本文引用的文献

1
Spatial and temporal organization of the Bacillus subtilis replication cycle.
Mol Microbiol. 2006 Oct;62(1):57-71. doi: 10.1111/j.1365-2958.2006.05356.x. Epub 2006 Aug 30.
2
MINIATURE escherichia coli CELLS DEFICIENT IN DNA.
Proc Natl Acad Sci U S A. 1967 Feb;57(2):321-6. doi: 10.1073/pnas.57.2.321.
5
Osmotic stress mechanically perturbs chemoreceptors in Escherichia coli.
Proc Natl Acad Sci U S A. 2006 Jan 17;103(3):592-6. doi: 10.1073/pnas.0510047103. Epub 2006 Jan 6.
6
Division accuracy in a stochastic model of Min oscillations in Escherichia coli.
Proc Natl Acad Sci U S A. 2006 Jan 10;103(2):347-52. doi: 10.1073/pnas.0505825102. Epub 2005 Dec 30.
7
Bacterial cell wall synthesis: new insights from localization studies.
Microbiol Mol Biol Rev. 2005 Dec;69(4):585-607. doi: 10.1128/MMBR.69.4.585-607.2005.
8
Single cell studies of the cell cycle and some models.
Theor Biol Med Model. 2005 Feb 9;2:4. doi: 10.1186/1742-4682-2-4.
9
Genomic channeling in bacterial cell division.
J Mol Recognit. 2004 Sep-Oct;17(5):481-7. doi: 10.1002/jmr.718.
10
FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli.
Curr Biol. 2004 Jul 13;14(13):1167-73. doi: 10.1016/j.cub.2004.06.048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验