Draghici Sorin, Khatri Purvesh, Tarca Adi Laurentiu, Amin Kashyap, Done Arina, Voichita Calin, Georgescu Constantin, Romero Roberto
Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48202, USA.
Genome Res. 2007 Oct;17(10):1537-45. doi: 10.1101/gr.6202607. Epub 2007 Sep 4.
A common challenge in the analysis of genomics data is trying to understand the underlying phenomenon in the context of all complex interactions taking place on various signaling pathways. A statistical approach using various models is universally used to identify the most relevant pathways in a given experiment. Here, we show that the existing pathway analysis methods fail to take into consideration important biological aspects and may provide incorrect results in certain situations. By using a systems biology approach, we developed an impact analysis that includes the classical statistics but also considers other crucial factors such as the magnitude of each gene's expression change, their type and position in the given pathways, their interactions, etc. The impact analysis is an attempt to a deeper level of statistical analysis, informed by more pathway-specific biology than the existing techniques. On several illustrative data sets, the classical analysis produces both false positives and false negatives, while the impact analysis provides biologically meaningful results. This analysis method has been implemented as a Web-based tool, Pathway-Express, freely available as part of the Onto-Tools (http://vortex.cs.wayne.edu).
基因组学数据分析中的一个常见挑战是,试图在各种信号通路中发生的所有复杂相互作用的背景下理解潜在现象。一种使用各种模型的统计方法被广泛用于识别给定实验中最相关的通路。在这里,我们表明现有的通路分析方法未能考虑重要的生物学方面,并且在某些情况下可能会提供错误的结果。通过使用系统生物学方法,我们开发了一种影响分析方法,该方法不仅包括经典统计学,还考虑其他关键因素,如每个基因表达变化的幅度、它们在给定通路中的类型和位置、它们的相互作用等。影响分析是一种比现有技术更深入的统计分析尝试,它基于更多特定于通路的生物学信息。在几个示例数据集上,经典分析产生了假阳性和假阴性结果,而影响分析提供了具有生物学意义的结果。这种分析方法已作为基于网络的工具Pathway-Express实现,可作为Onto-Tools(http://vortex.cs.wayne.edu)的一部分免费使用。