Department of Internal Medicine-Nephrology, Philipps-University, Marburg, Germany.
PLoS One. 2007 Sep 5;2(9):e827. doi: 10.1371/journal.pone.0000827.
In blood vessels, the endothelium is a crucial signal transduction interface in control of vascular tone and blood pressure to ensure energy and oxygen supply according to the organs' needs. In response to vasoactive factors and to shear stress elicited by blood flow, the endothelium secretes vasodilating or vasocontracting autacoids, which adjust the contractile state of the smooth muscle. In endothelial sensing of shear stress, the osmo- and mechanosensitive Ca(2+)-permeable TRPV4 channel has been proposed to be candidate mechanosensor. Using TRPV4(-/-) mice, we now investigated whether the absence of endothelial TRPV4 alters shear-stress-induced arterial vasodilation.
METHODOLOGY/PRINCIPAL FINDINGS: In TRPV4(-/-) mice, loss of the TRPV4 protein was confirmed by Western blot, immunohistochemistry and by in situ-patch-clamp techniques in carotid artery endothelial cells (CAEC). Endothelium-dependent vasodilation was determined by pressure myography in carotid arteries (CA) from TRPV4(-/-) mice and wild-type littermates (WT). In WT CAEC, TRPV4 currents could be elicited by TRPV4 activators 4alpha-phorbol-12,13-didecanoate (4alphaPDD), arachidonic acid (AA), and by hypotonic cell swelling (HTS). In striking contrast, in TRPV4(-/-) mice, 4alphaPDD did not produce currents and currents elicited by AA and HTS were significantly reduced. 4alphaPDD caused a robust and endothelium-dependent vasodilation in WT mice, again conspicuously absent in TRPV4(-/-) mice. Shear stress-induced vasodilation could readily be evoked in WT, but was completely eliminated in TRPV4(-/-) mice. In addition, flow/reperfusion-induced vasodilation was significantly reduced in TRPV4(-/-) vs. WT mice. Vasodilation in response to acetylcholine, vasoconstriction in response to phenylephrine, and passive mechanical compliance did not differ between genotypes, greatly underscoring the specificity of the above trpv4-dependent phenotype for physiologically relevant shear stress.
CONCLUSIONS/SIGNIFICANCE: Genetically encoded loss-of-function of trpv4 results in a loss of shear stress-induced vasodilation, a response pattern critically dependent on endothelial TRPV4 expression. Thus, Ca(2+)-influx through endothelial TRPV4 channels is a molecular mechanism contributing significantly to endothelial mechanotransduction.
在血管中,内皮细胞是控制血管张力和血压的关键信号转导界面,以确保根据器官的需求提供能量和氧气供应。内皮细胞对血管活性因子和血流引起的切应力作出反应,分泌血管舒张或血管收缩的自分泌物质,调节平滑肌的收缩状态。在内皮细胞对切应力的感知中,渗透和力敏感的 Ca(2+)通透性 TRPV4 通道已被提议作为候选力感受器。我们使用 TRPV4(-/-) 小鼠,现在研究内皮细胞 TRPV4 的缺失是否改变了切应力诱导的动脉血管舒张。
方法/主要发现:在 TRPV4(-/-) 小鼠中,通过 Western blot、免疫组织化学和颈动脉内皮细胞 (CAEC) 的原位贴附式膜片钳技术,证实了 TRPV4 蛋白的缺失。通过压力肌动描记术在 TRPV4(-/-) 小鼠和野生型同窝仔鼠 (WT) 的颈动脉 (CA) 中测定内皮依赖性血管舒张。在 WT CAEC 中,TRPV4 激动剂 4alpha-佛波醇-12,13-二癸酸酯 (4alphaPDD)、花生四烯酸 (AA) 和低渗细胞肿胀 (HTS) 可引发 TRPV4 电流。与此形成鲜明对比的是,在 TRPV4(-/-) 小鼠中,4alphaPDD 不产生电流,AA 和 HTS 引发的电流显著减少。4alphaPDD 在 WT 小鼠中引起强烈且内皮依赖性的血管舒张,而在 TRPV4(-/-) 小鼠中则明显缺失。WT 小鼠中很容易诱发切应力诱导的血管舒张,但在 TRPV4(-/-) 小鼠中完全消除。此外,与 WT 小鼠相比,TRPV4(-/-) 小鼠中的血流/再灌注诱导的血管舒张显著减少。对乙酰胆碱的血管舒张、对苯肾上腺素的血管收缩和被动机械顺应性在基因型之间没有差异,这极大地强调了上述 trpv4 依赖性表型对生理相关切应力的特异性。
结论/意义:TRPV4 的基因编码功能丧失导致切应力诱导的血管舒张丧失,这种反应模式严重依赖于内皮细胞 TRPV4 的表达。因此,内皮细胞 TRPV4 通道的 Ca(2+)内流是内皮细胞机械转导的重要分子机制。