Chamot-Rooke Julia, Rousseau Benoit, Lanternier Fanny, Mikaty Guillain, Mairey Emilie, Malosse Christian, Bouchoux Guy, Pelicic Vladimir, Camoin Luc, Nassif Xavier, Duménil Guillaume
Ecole Polytechnique, Laboratoire des Mécanismes Réactionnels, Département de Chimie, F-91128 Palaiseau, France.
Proc Natl Acad Sci U S A. 2007 Sep 11;104(37):14783-8. doi: 10.1073/pnas.0705335104. Epub 2007 Sep 5.
The importance of protein glycosylation in the interaction of pathogenic bacteria with their host is becoming increasingly clear. Neisseria meningitidis, the etiological agent of cerebrospinal meningitis, crosses cellular barriers after adhering to host cells through type IV pili. Pilin glycosylation genes (pgl) are responsible for the glycosylation of PilE, the major subunit of type IV pili, with the 2,4-diacetamido-2,4,6-trideoxyhexose residue. Nearly half of the clinical isolates, however, display an insertion in the pglBCD operon, which is anticipated to lead to a different, unidentified glycosylation. Here the structure of pilin glycosylation was determined in such a strain by "top-down" MS approaches. MALDI-TOF, nanoelectrospray ionization Fourier transform ion cyclotron resonance, and nanoelectrospray ionization quadrupole TOF MS analysis of purified pili preparations originating from N. meningitidis strains, either wild type or deficient for pilin glycosylation, revealed a glycan mass inconsistent with 2,4-diacetamido-2,4,6-trideoxyhexose or any sugar in the databases. This unusual modification was determined by in-source dissociation of the sugar from the protein followed by tandem MS analysis with collision-induced fragmentation to be a hexose modified with a glyceramido and an acetamido group. We further show genetically that the nature of the sugar present on the pilin is determined by the carboxyl-terminal region of the pglB gene modified by the insertion in the pglBCD locus. We thus report a previously undiscovered monosaccharide involved in posttranslational modification of type IV pilin subunits by a MS-based approach and determine the molecular basis of its biosynthesis.
蛋白质糖基化在病原菌与宿主相互作用中的重要性日益明晰。脑膜炎奈瑟菌是脑脊膜炎的病原体,通过IV型菌毛黏附宿主细胞后穿越细胞屏障。菌毛蛋白糖基化基因(pgl)负责IV型菌毛主要亚基PilE的糖基化,其糖基为2,4 - 二乙酰氨基 - 2,4,6 - 三脱氧己糖残基。然而,近一半的临床分离株在pglBCD操纵子中存在插入,预计这会导致不同的、未知的糖基化。在此,通过“自上而下”的质谱方法确定了此类菌株中菌毛蛋白糖基化的结构。对源自脑膜炎奈瑟菌野生型或菌毛蛋白糖基化缺陷型菌株的纯化菌毛制剂进行基质辅助激光解吸电离飞行时间质谱(MALDI - TOF)、纳电喷雾电离傅里叶变换离子回旋共振质谱以及纳电喷雾电离四极杆飞行时间质谱分析,结果显示聚糖质量与2,4 - 二乙酰氨基 - 2,4,6 - 三脱氧己糖或数据库中的任何糖类均不一致。通过糖从蛋白质的源内解离,随后进行碰撞诱导碎裂的串联质谱分析,确定这种异常修饰是一种被甘油酰胺基和乙酰氨基修饰的己糖。我们进一步通过遗传学方法表明,菌毛蛋白上糖的性质由pglB基因的羧基末端区域决定,该区域因pglBCD位点的插入而发生改变。因此,我们通过基于质谱的方法报道了一种先前未发现的参与IV型菌毛亚基翻译后修饰的单糖,并确定了其生物合成的分子基础。