Suppr超能文献

镰状细胞病中的红细胞谷氨酰胺耗竭、氧化还原环境改变与肺动脉高压

Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease.

作者信息

Morris Claudia R, Suh Jung H, Hagar Ward, Larkin Sandra, Bland D Anton, Steinberg Martin H, Vichinsky Elliott P, Shigenaga Mark, Ames Bruce, Kuypers Frans A, Klings Elizabeth S

机构信息

Department of Emergency Medicine, Children's Hospital and Research Center Oakland, 747 52nd St, Oakland, CA 94609, USA.

出版信息

Blood. 2008 Jan 1;111(1):402-10. doi: 10.1182/blood-2007-04-081703. Epub 2007 Sep 11.

Abstract

Erythrocyte glutathione depletion has been linked to hemolysis and oxidative stress. Glutamine plays an additional antioxidant role through preservation of intracellular nicotinamide adenine dinucleotide phosphate (NADPH) levels, required for glutathione recycling. Decreased nitric oxide (NO) bioavailability, which occurs in the setting of increased hemolysis and oxidative stress, contributes to the pathogenesis of pulmonary hypertension (PH) in sickle cell disease (SCD). We hypothesized that altered glutathione and glutamine metabolism play a role in this process. Total glutathione (and its precursors) and glutamine were assayed in plasma and erythrocytes of 40 SCD patients and 9 healthy volunteers. Erythrocyte total glutathione and glutamine levels were significantly lower in SCD patients than in healthy volunteers. Glutamine depletion was independently associated with PH, defined as a tricuspid regurgitant jet velocity (TRV) of at least 2.5 m/s. The ratio of erythrocyte glutamine:glutamate correlated inversely to TRV (r = -0.62, P < .001), plasma arginase concentration (r = -0.45, P = .002), and plasma-free hemoglobin level (r = -0.41, P = .01), linking erythrocyte glutamine depletion to dysregulation of the arginine-NO pathway and increased hemolytic rate. Decreased erythrocyte glutathione and glutamine levels contribute to alterations in the erythrocyte redox environment, which may compromise erythrocyte integrity, contribute to hemolysis, and play a role in the pathogenesis of PH of SCD.

摘要

红细胞谷胱甘肽耗竭与溶血和氧化应激有关。谷氨酰胺通过维持谷胱甘肽循环所需的细胞内烟酰胺腺嘌呤二核苷酸磷酸(NADPH)水平发挥额外的抗氧化作用。在溶血和氧化应激增加的情况下发生的一氧化氮(NO)生物利用度降低,促成了镰状细胞病(SCD)中肺动脉高压(PH)的发病机制。我们假设谷胱甘肽和谷氨酰胺代谢改变在这一过程中起作用。对40例SCD患者和9名健康志愿者的血浆和红细胞中的总谷胱甘肽(及其前体)和谷氨酰胺进行了检测。SCD患者的红细胞总谷胱甘肽和谷氨酰胺水平显著低于健康志愿者。谷氨酰胺耗竭与PH独立相关,PH定义为三尖瓣反流射流速度(TRV)至少2.5 m/s。红细胞谷氨酰胺:谷氨酸的比值与TRV呈负相关(r = -0.62,P <.001)、血浆精氨酸酶浓度(r = -0.45,P =.002)和血浆游离血红蛋白水平(r = -0.41,P =.01),将红细胞谷氨酰胺耗竭与精氨酸-NO途径的失调和溶血率增加联系起来。红细胞谷胱甘肽和谷氨酰胺水平降低导致红细胞氧化还原环境的改变,这可能损害红细胞完整性,导致溶血,并在SCD的PH发病机制中起作用。

相似文献

5
Pulmonary hypertension in children and adolescents with sickle cell disease.镰状细胞病患儿及青少年的肺动脉高压
Pediatr Cardiol. 2008 Mar;29(2):309-12. doi: 10.1007/s00246-007-9018-x. Epub 2007 Aug 7.
8
L-Glutamine in sickle cell disease.镰状细胞病中的L-谷氨酰胺。
Drugs Today (Barc). 2020 Apr;56(4):257-268. doi: 10.1358/dot.2020.56.4.3110575.
10
L-glutamine for sickle cell disease: more than reducing redox.L-谷氨酰胺治疗镰状细胞病:不仅仅是减少氧化还原。
Ann Hematol. 2022 Aug;101(8):1645-1654. doi: 10.1007/s00277-022-04867-y. Epub 2022 May 14.

引用本文的文献

1
A glutamine metabolic switch supports erythropoiesis.谷氨酰胺代谢开关支持红细胞生成。
Science. 2024 Nov 15;386(6723):eadh9215. doi: 10.1126/science.adh9215.
3
Ferroptosis as an emerging target in sickle cell disease.铁死亡作为镰状细胞病的一个新兴靶点。
Curr Res Toxicol. 2024 Jun 18;7:100181. doi: 10.1016/j.crtox.2024.100181. eCollection 2024.
4
Antioxidant supplementation for sickle cell disease.抗氧化剂补充治疗镰状细胞病。
Cochrane Database Syst Rev. 2024 May 22;5(5):CD013590. doi: 10.1002/14651858.CD013590.pub2.
5
Cardiovascular Consequences of Sickle Cell Disease.镰状细胞病的心血管后果
J Blood Med. 2024 May 6;15:207-216. doi: 10.2147/JBM.S455564. eCollection 2024.

本文引用的文献

3
Protective effect of arginine on oxidative stress in transgenic sickle mouse models.精氨酸对转基因镰状小鼠模型氧化应激的保护作用。
Free Radic Biol Med. 2006 Dec 15;41(12):1771-80. doi: 10.1016/j.freeradbiomed.2006.08.025. Epub 2006 Sep 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验