Suppr超能文献

大肠杆菌5-烯醇丙酮酸莽草酸-3-磷酸合酶中Pro101突变导致草甘膦耐受性的结构基础。

Structural basis of glyphosate tolerance resulting from mutations of Pro101 in Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase.

作者信息

Healy-Fried Martha L, Funke Todd, Priestman Melanie A, Han Huijong, Schönbrunn Ernst

机构信息

Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA.

出版信息

J Biol Chem. 2007 Nov 9;282(45):32949-55. doi: 10.1074/jbc.M705624200. Epub 2007 Sep 12.

Abstract

Glyphosate, the world's most used herbicide, is a massive success because it enables efficient weed control with minimal animal and environmental toxicity. The molecular target of glyphosate is 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), which catalyzes the sixth step of the shikimate pathway in plants and microorganisms. Glyphosate-tolerant variants of EPSPS constitute the basis of genetically engineered herbicide-tolerant crops. A single-site mutation of Pro(101) in EPSPS (numbering according to the enzyme from Escherichia coli) has been implicated in glyphosate-resistant weeds, but this residue is not directly involved in glyphosate binding, and the basis for this phenomenon has remained unclear in the absence of further kinetic and structural characterization. To probe the effects of mutations at this site, E. coli EPSPS enzymes were produced with glycine, alanine, serine, or leucine substituted for Pro(101). These mutant enzymes were analyzed by steady-state kinetics, and the crystal structures of the substrate binary and substrate.glyphosate ternary complexes of P101S and P101L EPSPS were determined to between 1.5- and 1.6-A resolution. It appears that residues smaller than leucine may be substituted for Pro(101) without decreasing catalytic efficiency. Any mutation at this site results in a structural change in the glyphosate-binding site, shifting Thr(97) and Gly(96) toward the inhibitor molecule. We conclude that the decreased inhibitory potency observed for glyphosate is a result of these mutation-induced long-range structural changes. The implications of our findings concerning the development and spread of glyphosate-resistant weeds are discussed.

摘要

草甘膦是世界上使用最广泛的除草剂,它极为成功,因为它能以对动物和环境毒性最小的方式实现高效除草。草甘膦的分子靶点是5-烯醇丙酮酰莽草酸-3-磷酸合酶(EPSPS),该酶催化植物和微生物中莽草酸途径的第六步反应。EPSPS的耐草甘膦变体构成了转基因抗除草剂作物的基础。EPSPS中Pro(101)位点(根据大肠杆菌中的酶进行编号)的单点突变与抗草甘膦杂草有关,但该残基并不直接参与草甘膦的结合,在缺乏进一步动力学和结构表征的情况下,这一现象的原因仍不清楚。为了探究该位点突变的影响,我们制备了用甘氨酸、丙氨酸、丝氨酸或亮氨酸取代Pro(101)的大肠杆菌EPSPS酶。通过稳态动力学对这些突变酶进行了分析,并测定了P101S和P101L EPSPS的底物二元复合物和底物-草甘膦三元复合物的晶体结构,分辨率在1.5至1.6埃之间。似乎小于亮氨酸的残基可以取代Pro(101)而不降低催化效率。该位点的任何突变都会导致草甘膦结合位点的结构变化,使Thr(97)和Gly(96)向抑制剂分子移动。我们得出结论,草甘膦抑制效力的降低是这些突变诱导的远程结构变化的结果。我们讨论了这些发现对草甘膦抗性杂草的发展和传播的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验