Agricultural Biology Department, Colorado State University, Fort Collins, Colorado, USA.
National Center for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
J Biol Chem. 2020 Jul 24;295(30):10307-10330. doi: 10.1074/jbc.REV120.013572. Epub 2020 May 19.
The widely successful use of synthetic herbicides over the past 70 years has imposed strong and widespread selection pressure, leading to the evolution of herbicide resistance in hundreds of weed species. Both target-site resistance (TSR) and nontarget-site resistance (NTSR) mechanisms have evolved to most herbicide classes. TSR often involves mutations in genes encoding the protein targets of herbicides, affecting the binding of the herbicide either at or near catalytic domains or in regions affecting access to them. Most of these mutations are nonsynonymous SNPs, but polymorphisms in more than one codon or entire codon deletions have also evolved. Some herbicides bind multiple proteins, making the evolution of TSR mechanisms more difficult. Increased amounts of protein target, by increased gene expression or by gene duplication, are an important, albeit less common, TSR mechanism. NTSR mechanisms include reduced absorption or translocation and increased sequestration or metabolic degradation. The mechanisms that can contribute to NTSR are complex and often involve genes that are members of large gene families. For example, enzymes involved in herbicide metabolism-based resistances include cytochromes P450, GSH -transferases, glucosyl and other transferases, aryl acylamidase, and others. Both TSR and NTSR mechanisms can combine at the individual level to produce higher resistance levels. The vast array of herbicide-resistance mechanisms for generalist (NTSR) and specialist (TSR and some NTSR) adaptations that have evolved over a few decades illustrate the evolutionary resilience of weed populations to extreme selection pressures. These evolutionary processes drive herbicide and herbicide-resistant crop development and resistance management strategies.
过去 70 年来,合成除草剂的广泛成功应用施加了强烈而广泛的选择压力,导致数百种杂草物种产生了除草剂抗性。靶标位点抗性(TSR)和非靶标位点抗性(NTSR)机制都已经进化到大多数除草剂类别。TSR 通常涉及编码除草剂靶标蛋白的基因发生突变,影响除草剂在催化结构域或影响其进入的区域的结合。大多数这些突变是非同义 SNP,但也有一个以上密码子的多态性或整个密码子缺失的突变。一些除草剂结合多个蛋白质,使得 TSR 机制的进化更加困难。通过增加基因表达或基因复制增加蛋白质靶标的数量,是一种重要的 TSR 机制,尽管不太常见。NTSR 机制包括减少吸收或转运以及增加隔离或代谢降解。可能有助于 NTSR 的机制很复杂,通常涉及基因家族成员的基因。例如,参与基于除草剂代谢的抗性的酶包括细胞色素 P450、GSH 转移酶、葡萄糖基和其他转移酶、芳基酰基酰胺酶等。TSR 和 NTSR 机制都可以在个体水平上结合,产生更高的抗性水平。几十年来,针对一般适应(NTSR)和专业适应(TSR 和一些 NTSR)的大量除草剂抗性机制进化,说明了杂草种群对极端选择压力的进化弹性。这些进化过程推动了除草剂和抗除草剂作物的发展以及抗性管理策略。