Jiang Jian, Chen Long, Ke Lu, Dou Bozheng, Zhu Yueying, Shi Yazhou, Qiu Huahai, Zhang Bengong, Zhou Tianshou, Wei Guo-Wei
Research Center of Nonlinear Science, School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, 430200, P R. China.
Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA.
ArXiv. 2025 Mar 19:arXiv:2503.14956v1.
Chaos is omnipresent in nature, and its understanding provides enormous social and economic benefits. However, the unpredictability of chaotic systems is a textbook concept due to their sensitivity to initial conditions, aperiodic behavior, fractal dimensions, nonlinearity, and strange attractors. In this work, we introduce, for the first time, chaotic learning, a novel multiscale topological paradigm that enables accurate predictions from chaotic systems. We show that seemingly random and unpredictable chaotic dynamics counterintuitively offer unprecedented quantitative predictions. Specifically, we devise multiscale topological Laplacians to embed real-world data into a family of interactive chaotic dynamical systems, modulate their dynamical behaviors, and enable the accurate prediction of the input data. As a proof of concept, we consider 28 datasets from four categories of realistic problems: 10 brain waves, four benchmark protein datasets, 13 single-cell RNA sequencing datasets, and an image dataset, as well as two distinct chaotic dynamical systems, namely the Lorenz and Rossler attractors. We demonstrate chaotic learning predictions of the physical properties from chaos. Our new chaotic learning paradigm profoundly changes the textbook perception of chaos and bridges topology, chaos, and learning for the first time.
混沌在自然界中无处不在,对其的理解能带来巨大的社会和经济效益。然而,由于混沌系统对初始条件敏感、行为非周期性、具有分形维、非线性以及存在奇怪吸引子,其不可预测性是一个教科书式的概念。在这项工作中,我们首次引入了混沌学习,这是一种新颖的多尺度拓扑范式,能够对混沌系统进行准确预测。我们表明,看似随机且不可预测的混沌动力学反而能提供前所未有的定量预测。具体而言,我们设计了多尺度拓扑拉普拉斯算子,将现实世界的数据嵌入到一系列交互式混沌动力系统中,调节它们的动力学行为,并实现对输入数据的准确预测。作为概念验证,我们考虑了来自四类现实问题的28个数据集:10个脑电波数据集、4个基准蛋白质数据集、13个单细胞RNA测序数据集和1个图像数据集,以及两个不同的混沌动力系统,即洛伦兹吸引子和罗斯勒吸引子。我们展示了从混沌中对物理性质的混沌学习预测。我们全新的混沌学习范式深刻改变了教科书对混沌的认知,并首次在拓扑学、混沌和学习之间架起了桥梁。