Soontorngun Nitnipa, Larochelle Marc, Drouin Simon, Robert François, Turcotte Bernard
Department of Medicine, Royal Victoria Hospital, McGill University,Montréal, Québec, Canada H3A 1A1.
Mol Cell Biol. 2007 Nov;27(22):7895-905. doi: 10.1128/MCB.01055-07. Epub 2007 Sep 17.
In Saccharomyces cerevisiae, RDS2 encodes a zinc cluster transcription factor with unknown function. Here, we unravel a key function of Rds2 in gluconeogenesis using chromatin immunoprecipitation-chip technology. While we observed that Rds2 binds to only a few promoters in glucose-containing medium, it binds many additional genes when the medium is shifted to ethanol, a nonfermentable carbon source. Interestingly, many of these genes are involved in gluconeogenesis, the tricarboxylic acid cycle, and the glyoxylate cycle. Importantly, we show that Rds2 has a dual function: it directly activates the expression of gluconeogenic structural genes while it represses the expression of negative regulators of this pathway. We also show that the purified DNA binding domain of Rds2 binds in vitro to carbon source response elements found in the promoters of target genes. Finally, we show that upon a shift to ethanol, Rds2 activation is correlated with its hyperphosphorylation by the Snf1 kinase. In summary, we have characterized Rds2 as a novel major regulator of gluconeogenesis.
在酿酒酵母中,RDS2编码一种功能未知的锌簇转录因子。在此,我们利用染色质免疫沉淀芯片技术揭示了Rds2在糖异生中的关键功能。我们观察到,在含葡萄糖的培养基中,Rds2仅与少数启动子结合,而当培养基换成乙醇(一种不可发酵的碳源)时,它会与许多其他基因结合。有趣的是,这些基因中的许多都参与糖异生、三羧酸循环和乙醛酸循环。重要的是,我们发现Rds2具有双重功能:它直接激活糖异生结构基因的表达,同时抑制该途径负调控因子的表达。我们还表明,纯化的Rds2 DNA结合结构域在体外与靶基因启动子中发现的碳源反应元件结合。最后,我们发现换成乙醇后,Rds2的激活与其被Snf1激酶过度磷酸化有关。总之,我们已将Rds2鉴定为糖异生的一种新型主要调节因子。