Suppr超能文献

多个声音水平下耳蜗背侧核神经元的感受野

Receptive field for dorsal cochlear nucleus neurons at multiple sound levels.

作者信息

Bandyopadhyay Sharba, Reiss Lina A J, Young Eric D

机构信息

Center for Hearing and Balance and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA.

出版信息

J Neurophysiol. 2007 Dec;98(6):3505-15. doi: 10.1152/jn.00539.2007. Epub 2007 Sep 26.

Abstract

Neurons in the dorsal cochlear nucleus (DCN) exhibit nonlinearities in spectral processing, which make it difficult to predict the neurons' responses to stimuli. Here, we consider two possible sources of nonlinearity: nonmonotonic responses as sound level increases due to inhibition and interactions between frequency components. A spectral weighting function model of rate responses is used; the model approximates the neuron's rate response as a weighted sum of the frequency components of the stimulus plus a second-order sum that captures interactions between frequencies. Such models approximate DCN neurons well at low spectral contrast, i.e., when the SD (contrast) of the stimulus spectrum is limited to 3 dB. This model is compared with a first-order sum with weights that are explicit functions of sound level, so that the low-contrast model is extended to spectral contrasts of 12 dB, the range of natural stimuli. The sound-level-dependent weights improve prediction performance at large spectral contrast. However, the interactions between frequencies, represented as second-order terms, are more important at low spectral contrast. The level-dependent model is shown to predict previously described patterns of responses to spectral edges, showing that small changes in the inhibitory components of the receptive field can produce large changes in the responses of the neuron to features of natural stimuli. These results provide an effective way of characterizing nonlinear auditory neurons incorporating stimulus-dependent sensitivity changes. Such models could be used for neurons in other sensory systems that show similar effects.

摘要

耳蜗背核(DCN)中的神经元在频谱处理中表现出非线性,这使得预测神经元对刺激的反应变得困难。在此,我们考虑两种可能的非线性来源:由于抑制导致声级增加时的非单调反应以及频率成分之间的相互作用。使用了一种速率反应的频谱加权函数模型;该模型将神经元的速率反应近似为刺激频率成分的加权和加上一个捕捉频率之间相互作用的二阶和。在低频谱对比度下,即当刺激频谱的标准差(对比度)限制在3 dB时,此类模型能很好地近似DCN神经元。将该模型与权重是声级显式函数的一阶和进行比较,从而将低对比度模型扩展到12 dB的频谱对比度,即自然刺激的范围。依赖声级的权重在大频谱对比度下提高了预测性能。然而,以二阶项表示的频率之间的相互作用在低频谱对比度下更为重要。结果表明,依赖声级的模型能够预测先前描述的对频谱边缘的反应模式,表明感受野抑制成分的微小变化会导致神经元对自然刺激特征的反应产生巨大变化。这些结果提供了一种有效的方法来表征包含依赖刺激的敏感性变化的非线性听觉神经元。此类模型可用于其他显示类似效应的感觉系统中的神经元。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验