Schuss Z, Singer A, Holcman D
Department of Mathematics, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel.
Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16098-103. doi: 10.1073/pnas.0706599104. Epub 2007 Sep 27.
The study of the diffusive motion of ions or molecules in confined biological microdomains requires the derivation of the explicit dependence of quantities, such as the decay rate of the population or the forward chemical reaction rate constant on the geometry of the domain. Here, we obtain this explicit dependence for a model of a Brownian particle (ion, molecule, or protein) confined to a bounded domain (a compartment or a cell) by a reflecting boundary, except for a small window through which it can escape. We call the calculation of the mean escape time the narrow escape problem. This time diverges as the window shrinks, thus rendering the calculation a singular perturbation problem. Here, we present asymptotic formulas for the mean escape time in several cases, including regular domains in two and three dimensions and in some singular domains in two dimensions. The mean escape time comes up in many applications, because it represents the mean time it takes for a molecule to hit a target binding site. We present several applications in cellular biology: calcium decay in dendritic spines, a Markov model of multicomponent chemical reactions in microdomains, dynamics of receptor diffusion on the surface of neurons, and vesicle trafficking inside a cell.
对受限生物微区中离子或分子扩散运动的研究需要推导诸如粒子数衰减率或正向化学反应速率常数等量对微区几何形状的明确依赖关系。在此,我们针对一个布朗粒子(离子、分子或蛋白质)的模型得到了这种明确依赖关系,该粒子被反射边界限制在一个有界区域(隔室或细胞)内,除了一个它可以从中逃逸的小窗口。我们将平均逃逸时间的计算称为窄逃逸问题。随着窗口缩小,这个时间会发散,从而使计算成为一个奇异摄动问题。在此,我们给出了几种情况下平均逃逸时间的渐近公式,包括二维和三维的规则区域以及二维的一些奇异区域。平均逃逸时间在许多应用中都会出现,因为它代表了分子到达目标结合位点所需的平均时间。我们展示了在细胞生物学中的几个应用:树突棘中的钙衰减、微区中多组分化学反应的马尔可夫模型、神经元表面受体扩散的动力学以及细胞内的囊泡运输。