Suppr超能文献

人工耳蜗与大脑可塑性。

Cochlear implants and brain plasticity.

作者信息

Fallon James B, Irvine Dexter R F, Shepherd Robert K

机构信息

Bionic Ear Institute, 384-388 Albert Street, East Melbourne, VIC 3002, Australia.

出版信息

Hear Res. 2008 Apr;238(1-2):110-7. doi: 10.1016/j.heares.2007.08.004. Epub 2007 Sep 1.

Abstract

Cochlear implants have been implanted in over 110,000 deaf adults and children worldwide and provide these patients with important auditory cues necessary for auditory awareness and speech perception via electrical stimulation of the auditory nerve (AN). In 1942, Woolsey and Walzl presented the first report of cortical responses to localised electrical stimulation of different sectors of the AN in normal hearing cats, and established the cochleotopic organization of the projections to primary auditory cortex. Subsequently, individual cortical neurons in normal hearing animals have been shown to have well characterized input-output functions for electrical stimulation and decreasing response latencies with increasing stimulus strength. However, the central auditory system is not immutable, and has a remarkable capacity for plastic change, even into adulthood, as a result of changes in afferent input. This capacity for change is likely to contribute to the ongoing clinical improvements observed in speech perception for cochlear implant users. This review examines the evidence for changes of the response properties of neurons in, and consequently the functional organization of, the central auditory system produced by chronic, behaviourally relevant, electrical stimulation of the AN in profoundly deaf humans and animals.

摘要

全球已有超过11万名成年和儿童聋人植入了人工耳蜗,通过对听神经(AN)进行电刺激,为这些患者提供听觉感知和言语感知所需的重要听觉线索。1942年,伍尔西和瓦尔兹发表了首份关于正常听力猫的听神经不同部位局部电刺激引起的皮层反应的报告,并确立了投射到初级听觉皮层的蜗轴组织。随后,研究表明正常听力动物的单个皮层神经元对电刺激具有特征明确的输入-输出功能,且随着刺激强度增加,反应潜伏期缩短。然而,中枢听觉系统并非一成不变,由于传入输入的变化,即使到成年也具有显著的可塑性变化能力。这种变化能力可能有助于人工耳蜗使用者在言语感知方面持续出现临床改善。本综述探讨了在极重度聋的人类和动物中,通过对听神经进行慢性、与行为相关的电刺激,中枢听觉系统中神经元反应特性的变化以及由此产生的功能组织变化的证据。

相似文献

1
Cochlear implants and brain plasticity.
Hear Res. 2008 Apr;238(1-2):110-7. doi: 10.1016/j.heares.2007.08.004. Epub 2007 Sep 1.
2
Assessment of responses to cochlear implant stimulation at different levels of the auditory pathway.
Hear Res. 2015 Apr;322:67-76. doi: 10.1016/j.heares.2014.10.011. Epub 2014 Nov 4.
3
Plasticity of tonotopic maps in humans: influence of hearing loss, hearing aids and cochlear implants.
Acta Otolaryngol. 2010 Mar;130(3):333-7. doi: 10.3109/00016480903258024.
4
Cortical reorganization in postlingually deaf cochlear implant users: Intra-modal and cross-modal considerations.
Hear Res. 2017 Jan;343:128-137. doi: 10.1016/j.heares.2016.07.005. Epub 2016 Jul 26.
6
Perfusion SPECT in cochlear implantation and promontory stimulation.
Nucl Med Commun. 2004 May;25(5):521-5. doi: 10.1097/00006231-200405000-00015.
7
Modeled auditory nerve responses to amplitude modulated cochlear implant stimulation.
Hear Res. 2017 Aug;351:19-33. doi: 10.1016/j.heares.2017.05.007. Epub 2017 May 19.
8
Development of electrophysiological and behavioural measures of electrode discrimination in adult cochlear implant users.
Hear Res. 2018 Sep;367:74-87. doi: 10.1016/j.heares.2018.07.002. Epub 2018 Jul 4.
9
Audibility, speech perception and processing of temporal cues in ribbon synaptic disorders due to OTOF mutations.
Hear Res. 2015 Dec;330(Pt B):200-12. doi: 10.1016/j.heares.2015.07.007. Epub 2015 Jul 15.
10
Visual Cross-Modal Re-Organization in Children with Cochlear Implants.
PLoS One. 2016 Jan 25;11(1):e0147793. doi: 10.1371/journal.pone.0147793. eCollection 2016.

引用本文的文献

1
A deep learning framework for understanding cochlear implants.
bioRxiv. 2025 Jul 21:2025.07.16.665227. doi: 10.1101/2025.07.16.665227.
4
Resting-State Functional Connectivity Predicts Cochlear-Implant Speech Outcomes.
Ear Hear. 2025;46(1):128-138. doi: 10.1097/AUD.0000000000001564. Epub 2024 Jul 16.
7
Imaging-based frequency mapping for cochlear implants - Evaluated using a daily randomized controlled trial.
Front Neurosci. 2023 Apr 13;17:1119933. doi: 10.3389/fnins.2023.1119933. eCollection 2023.
8
9
Review of Speech Outcomes in Cochlear Implant Recipients at a Nascent Cochlear Implant Program.
Cureus. 2022 Feb 23;14(2):e22543. doi: 10.7759/cureus.22543. eCollection 2022 Feb.
10
Dimensions and forms of artefacts in 1.5 T and 3 T MRI caused by cochlear implants.
Sci Rep. 2022 Mar 22;12(1):4884. doi: 10.1038/s41598-022-08988-2.

本文引用的文献

1
Speech perception in children using cochlear implants: prediction of long-term outcomes.
Cochlear Implants Int. 2002 Mar;3(1):1-18. doi: 10.1179/cim.2002.3.1.1.
3
Changes in pitch with a cochlear implant over time.
J Assoc Res Otolaryngol. 2007 Jun;8(2):241-57. doi: 10.1007/s10162-007-0077-8. Epub 2007 Mar 9.
4
Auditory associative memory and representational plasticity in the primary auditory cortex.
Hear Res. 2007 Jul;229(1-2):54-68. doi: 10.1016/j.heares.2007.01.004. Epub 2007 Jan 17.
5
Auditory cortical plasticity: does it provide evidence for cognitive processing in the auditory cortex?
Hear Res. 2007 Jul;229(1-2):158-70. doi: 10.1016/j.heares.2007.01.006. Epub 2007 Jan 16.
6
Cochlear implants: cortical plasticity in congenital deprivation.
Prog Brain Res. 2006;157:283-313. doi: 10.1016/s0079-6123(06)57018-9.
7
Brain plasticity under cochlear implant stimulation.
Adv Otorhinolaryngol. 2006;64:89-108. doi: 10.1159/000094647.
8
Central auditory development in children with cochlear implants: clinical implications.
Adv Otorhinolaryngol. 2006;64:66-88. doi: 10.1159/000094646.
9
Cortical activity at rest predicts cochlear implantation outcome.
Cereb Cortex. 2007 Apr;17(4):909-17. doi: 10.1093/cercor/bhl001. Epub 2006 May 26.
10
Predictive models for cochlear implantation in elderly candidates.
Arch Otolaryngol Head Neck Surg. 2005 Dec;131(12):1049-54. doi: 10.1001/archotol.131.12.1049.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验