Suppr超能文献

铁、视网膜和晶状体:重点综述。

Iron, the retina and the lens: a focused review.

机构信息

Dept. Ophthalmology, School of Medicine, PO Box 365067, San Juan, PR 00936-5067.

出版信息

Exp Eye Res. 2010 Jun;90(6):664-78. doi: 10.1016/j.exer.2010.03.003. Epub 2010 Mar 15.

Abstract

This review is focused on iron metabolism in the retina and in the lens and its relation to their respective age-related pathologies, macular degeneration (AMD) and cataract (ARC). Several aspects of iron homeostasis are considered first in the retina and second in the lens, paying particular attention to the transport of iron through the blood-retinal barrier and through the lens epithelial cell barrier, to the immunochemistry of iron-related proteins and their expression in both the retina and the lens, and to the nature of the photochemical damage caused by UV light on both tissues. A comparative overview of some iron related parameters (total iron, transferrin (Tf), transferrin saturation and total iron binding capacity), in plasma and ocular tissues and fluids of three animal species is also presented. Based on results selected from the literature reviewed, and our own results, a scheme for the overall circulation of iron within and out of the eye is proposed, in which, (i) iron is pumped from the retina to the vitreous body by a ferroportin/ferroxidase-mediated process at the endfeet of Müller cells, (ii) vitreal Tf binds this iron and the complex diffuses towards the lens, (iii) the iron/Tf complex is incorporated into the lens extracellular space probably at the lens equator and moves to the epithelial-fiber interface, (iv) upon interaction with Tf receptors of the apical pole of lens epithelial cells, the iron/Tf complex is endocytosed and iron is exported as Fe(3+) by a ferroportin/ferroxidase-mediated process taking place at the basal pole of the epithelial cells, and (v) Fe(3+) is bound to aqueous humor Tf and drained with the aqueous humor into systemic blood circulation for recycling. The proposed scheme represents an example of close cooperation between the retina and the lens to maintain a constant flow of iron within the eye that provides an adequate supply of iron to ocular tissues and secures the systemic recycling of this element. It does not discount the existence of additional ways for iron to leave the eye through the blood-retinal barrier. In this review both AMD and ARC are recognized as multifactorial diseases with an important photoxidative component, and exhibiting a remarkable similitude of altered local iron metabolism. The epidemiological relationship between ARC and ferropenic anemia is explained on the basis that hepcidin, the hormone responsible for the anemia of chronic inflammation, could paradoxically cause intracellular iron overload in the lens by interfering with the proposed ferroportin/ferroxidase-mediated export of iron at the basal side of the anterior lens epithelium. Other authors have suggested that a similar situation is created in the retina in the case of AMD.

摘要

这篇综述主要关注视网膜和晶状体中的铁代谢及其与各自的年龄相关性病变,即黄斑变性(AMD)和白内障(ARC)的关系。首先考虑了铁稳态的几个方面,一方面是在视网膜中,另一方面是在晶状体中,特别注意铁通过血视网膜屏障和晶状体上皮细胞屏障的运输,以及铁相关蛋白的免疫化学及其在视网膜和晶状体中的表达,以及紫外线对这两种组织的光化学损伤的性质。还介绍了三种动物物种血浆和眼组织及液中一些与铁相关的参数(总铁、转铁蛋白(Tf)、转铁蛋白饱和度和总铁结合能力)的比较概述。基于从综述中选择的结果和我们自己的结果,提出了一个铁在眼内和眼外整体循环的方案,其中,(i)通过 Muller 细胞末端的亚铁转运蛋白/亚铁氧化酶介导的过程将铁从视网膜泵入玻璃体,(ii)玻璃体 Tf 结合该铁,复合物向晶状体扩散,(iii)铁/Tf 复合物可能在晶状体赤道处掺入晶状体细胞外空间,并移动到上皮-纤维界面,(iv)与晶状体上皮细胞顶端的 Tf 受体相互作用后,铁/Tf 复合物被内吞,铁作为 Fe(3+)通过发生在上皮细胞基底极的亚铁转运蛋白/亚铁氧化酶介导的过程被输出,(v)Fe(3+)与房水 Tf 结合,并随房水排入全身血液循环进行再循环。所提出的方案代表了视网膜和晶状体之间密切合作的一个例子,以维持眼内铁的恒定流动,为眼部组织提供充足的铁供应,并确保该元素的全身再循环。它并没有排除铁通过血视网膜屏障离开眼睛的其他途径。在本综述中,AMD 和 ARC 都被认为是具有重要光氧化成分的多因素疾病,并表现出明显相似的局部铁代谢改变。ARC 与缺铁性贫血的流行病学关系可以解释为,负责慢性炎症性贫血的激素铁调素,通过干扰前晶状体上皮细胞基底侧提出的亚铁转运蛋白/亚铁氧化酶介导的铁输出,可能会使晶状体中的细胞内铁超载。其他作者还提出,在 AMD 的情况下,视网膜中也会出现类似的情况。

相似文献

1
Iron, the retina and the lens: a focused review.
Exp Eye Res. 2010 Jun;90(6):664-78. doi: 10.1016/j.exer.2010.03.003. Epub 2010 Mar 15.
2
Iron homeostasis and toxicity in retinal degeneration.
Prog Retin Eye Res. 2007 Nov;26(6):649-73. doi: 10.1016/j.preteyeres.2007.07.004. Epub 2007 Aug 11.
4
Iron uptake by cultured lens epithelial cells.
Graefes Arch Clin Exp Ophthalmol. 1995 Jun;233(6):354-9. doi: 10.1007/BF00200484.
5
Brain iron homeostasis.
Dan Med Bull. 2002 Nov;49(4):279-301.
7
Transferrin secretion by lens epithelial cells in culture.
Exp Eye Res. 1995 Jun;60(6):667-73. doi: 10.1016/s0014-4835(05)80008-9.
9
Iron and age-related macular degeneration.
Klin Oczna. 2009;111(4-6):174-7.

引用本文的文献

3
Therapeutic potential of iron chelators in retinal vascular diseases.
Int J Ophthalmol. 2023 Nov 18;16(11):1899-1910. doi: 10.18240/ijo.2023.11.24. eCollection 2023.
4
Selenium intake help prevent age-related cataract formation: Evidence from NHANES 2001-2008.
Front Nutr. 2023 Jan 27;10:1042893. doi: 10.3389/fnut.2023.1042893. eCollection 2023.
5
Neuroprotective Effects of Transferrin in Experimental Glaucoma Models.
Int J Mol Sci. 2022 Oct 22;23(21):12753. doi: 10.3390/ijms232112753.
6
The Possible Positive Mechanisms of Pirenoxine in Cataract Formation.
Int J Mol Sci. 2022 Aug 21;23(16):9431. doi: 10.3390/ijms23169431.
7
Levels of Trace Elements in the Lens, Aqueous Humour, and Plasma of Cataractous Patients-A Narrative Review.
Int J Environ Res Public Health. 2022 Aug 20;19(16):10376. doi: 10.3390/ijerph191610376.
8
Activation of Nrf2/HO-1 Antioxidant Pathway by Heme Attenuates Calcification of Human Lens Epithelial Cells.
Pharmaceuticals (Basel). 2022 Apr 19;15(5):493. doi: 10.3390/ph15050493.
9
Regulations of Retinal Inflammation: Focusing on Müller Glia.
Front Cell Dev Biol. 2022 Apr 27;10:898652. doi: 10.3389/fcell.2022.898652. eCollection 2022.
10
Iron Accumulation and Lipid Peroxidation in the Aging Retina: Implication of Ferroptosis in Age-Related Macular Degeneration.
Aging Dis. 2021 Apr 1;12(2):529-551. doi: 10.14336/AD.2020.0912. eCollection 2021 Apr.

本文引用的文献

1
Tight junction proteins as channel formers and barrier builders.
Ann N Y Acad Sci. 2009 May;1165:211-9. doi: 10.1111/j.1749-6632.2009.04439.x.
2
Assessing susceptibility to age-related macular degeneration with proteomic and genomic biomarkers.
Mol Cell Proteomics. 2009 Jun;8(6):1338-49. doi: 10.1074/mcp.M800453-MCP200. Epub 2009 Feb 6.
3
Iron metabolism in the eye: a review.
Exp Eye Res. 2009 Feb;88(2):204-15. doi: 10.1016/j.exer.2008.10.026. Epub 2008 Nov 21.
4
Blood-retinal barrier in hypoxic ischaemic conditions: basic concepts, clinical features and management.
Prog Retin Eye Res. 2008 Nov;27(6):622-47. doi: 10.1016/j.preteyeres.2008.09.003. Epub 2008 Oct 4.
5
Hepcidin regulation of iron transport.
J Nutr. 2008 Nov;138(11):2284-8. doi: 10.3945/jn.108.096347.
6
Age-related macular degeneration.
N Engl J Med. 2008 Jun 12;358(24):2606-17. doi: 10.1056/NEJMra0801537.
7
Expression and localisation of apical junctional complex proteins in lens epithelial cells.
Exp Eye Res. 2008 Jul;87(1):64-70. doi: 10.1016/j.exer.2008.03.017. Epub 2008 Apr 3.
8
Retinal pigment epithelium lipofuscin proteomics.
Mol Cell Proteomics. 2008 Jul;7(7):1397-405. doi: 10.1074/mcp.M700525-MCP200. Epub 2008 Apr 24.
9
Tight junctions and the modulation of barrier function in disease.
Histochem Cell Biol. 2008 Jul;130(1):55-70. doi: 10.1007/s00418-008-0424-9. Epub 2008 Apr 16.
10
Iron regulation and erythropoiesis.
Curr Opin Hematol. 2008 May;15(3):169-75. doi: 10.1097/MOH.0b013e3282f73335.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验