Suppr超能文献

通过磷酸化循环对钙振荡进行解码:分析结果

Decoding of calcium oscillations by phosphorylation cycles: analytic results.

作者信息

Salazar Carlos, Politi Antonio Zaccaria, Höfer Thomas

机构信息

Research Group Modeling of Biological Systems, German Cancer Research Center, Heidelberg, Germany.

出版信息

Biophys J. 2008 Feb 15;94(4):1203-15. doi: 10.1529/biophysj.107.113084. Epub 2007 Oct 5.

Abstract

Experimental studies have demonstrated that Ca(2+)-regulated proteins are sensitive to the frequency of Ca(2+) oscillations, and several mathematical models for specific proteins have provided insight into the mechanisms involved. Because of the large number of Ca(2+)-regulated proteins in signal transduction, metabolism and gene expression, it is desirable to establish in general terms which molecular properties shape the response to oscillatory Ca(2+) signals. Here we address this question by analyzing in detail a model of a prototypical Ca(2+)-decoding module, consisting of a target protein whose activity is controlled by a Ca(2+)-activated kinase and the counteracting phosphatase. We show that this module can decode the frequency of Ca(2+) oscillations, at constant average Ca(2+) signal, provided that the Ca(2+) spikes are narrow and the oscillation frequency is sufficiently low--of the order of the phosphatase rate constant or below. Moreover, Ca(2+) oscillations activate the target more efficiently than a constant signal when Ca(2+) is bound cooperatively and with low affinity. Thus, the rate constants and the Ca(2+) affinities of the target-modifying enzymes can be tuned in such a way that the module responds optimally to Ca(2+) spikes of a certain amplitude and frequency. Frequency sensitivity is further enhanced when the limited duration of the external stimulus driving Ca(2+) signaling is accounted for. Thus, our study identifies molecular parameters that may be involved in establishing the specificity of cellular responses downstream of Ca(2+) oscillations.

摘要

实验研究表明,钙(Ca2+)调节蛋白对Ca2+振荡频率敏感,并且针对特定蛋白的几个数学模型为其中涉及的机制提供了见解。由于信号转导、代谢和基因表达中存在大量Ca2+调节蛋白,因此总体上确定哪些分子特性决定了对振荡Ca2+信号的响应是很有必要的。在这里,我们通过详细分析一个典型的Ca2+解码模块模型来解决这个问题,该模块由一个目标蛋白组成,其活性由Ca2+激活的激酶和起抵消作用的磷酸酶控制。我们表明,只要Ca2+尖峰狭窄且振荡频率足够低(约为磷酸酶速率常数或更低),该模块就能在平均Ca2+信号恒定的情况下解码Ca2+振荡频率。此外,当Ca2+以协同且低亲和力结合时,Ca2+振荡比恒定信号更有效地激活目标。因此,可以调整目标修饰酶的速率常数和Ca2+亲和力,使该模块对特定幅度和频率的Ca2+尖峰做出最佳响应。当考虑驱动Ca2+信号传导的外部刺激的有限持续时间时,频率敏感性会进一步增强。因此,我们的研究确定了可能参与建立Ca2+振荡下游细胞反应特异性的分子参数。

相似文献

1
Decoding of calcium oscillations by phosphorylation cycles: analytic results.
Biophys J. 2008 Feb 15;94(4):1203-15. doi: 10.1529/biophysj.107.113084. Epub 2007 Oct 5.
2
What can we learn from the irregularity of Ca2+ oscillations?
Chaos. 2009 Sep;19(3):037112. doi: 10.1063/1.3160569.
3
4
Frequency decoding of calcium oscillations.
Biochim Biophys Acta. 2014 Mar;1840(3):964-9. doi: 10.1016/j.bbagen.2013.11.015. Epub 2013 Nov 22.
5
A minimal model for decoding of time-limited Ca2+ oscillations.
Biophys Chem. 2006 Apr 1;120(3):161-7. doi: 10.1016/j.bpc.2005.11.005. Epub 2005 Dec 9.
6
Protein phosphorylation driven by intracellular calcium oscillations: a kinetic analysis.
Biophys Chem. 1992 Apr;42(3):257-70. doi: 10.1016/0301-4622(92)80018-z.
7
Intrinsic fluctuations, robustness, and tunability in signaling cycles.
Biophys J. 2007 Jun 15;92(12):4473-81. doi: 10.1529/biophysj.106.088856. Epub 2007 Mar 30.
8
Feedback, Mass Conservation and Reaction Kinetics Impact the Robustness of Cellular Oscillations.
PLoS Comput Biol. 2016 Dec 27;12(12):e1005298. doi: 10.1371/journal.pcbi.1005298. eCollection 2016 Dec.
9
Simulation of spontaneous Ca2+ oscillations in astrocytes mediated by voltage-gated calcium channels.
Biophys J. 2009 Nov 4;97(9):2429-37. doi: 10.1016/j.bpj.2009.08.030.

引用本文的文献

1
Differential regulation of calcium-activated plant kinases in Arabidopsis thaliana.
Plant J. 2025 Sep;123(5):e70413. doi: 10.1111/tpj.70413.
2
The Hill-Type Equation Reveals the Regulatory Principle of Target Protein Expression Led by p53 Pulsing.
FASEB Bioadv. 2025 Jun 6;7(8):e70026. doi: 10.1096/fba.2024-00220. eCollection 2025 Aug.
4
Transient frequency preference responses in cell signaling systems.
NPJ Syst Biol Appl. 2024 Aug 11;10(1):86. doi: 10.1038/s41540-024-00413-w.
5
Modulation of calcium signaling and metabolic pathways in endothelial cells with magnetic fields.
Nanoscale Adv. 2024 Jan 23;6(4):1163-1182. doi: 10.1039/d3na01065a. eCollection 2024 Feb 13.
6
Extracellular ATP-induced calcium oscillations regulating the differentiation of osteoblasts through aerobic oxidation metabolism pathways.
J Bone Miner Metab. 2023 Sep;41(5):606-620. doi: 10.1007/s00774-023-01449-4. Epub 2023 Jul 7.
7
X-ray irradiation triggers immune response in human T-lymphocytes via store-operated Ca2+ entry and NFAT activation.
J Gen Physiol. 2022 May 2;154(5). doi: 10.1085/jgp.202112865. Epub 2022 Apr 13.
8
Decoding the Bell-Shaped Calcium Spikes in Phosphorylation Cycles of Flagella.
Int J Mol Sci. 2022 Mar 29;23(7):3760. doi: 10.3390/ijms23073760.
9
A Hill type equation can predict target gene expression driven by p53 pulsing.
FEBS Open Bio. 2021 Jun;11(6):1799-1808. doi: 10.1002/2211-5463.13179. Epub 2021 May 27.
10
The Oscillation Amplitude, Not the Frequency of Cytosolic Calcium, Regulates Apoptosis Induction.
iScience. 2020 Oct 13;23(11):101671. doi: 10.1016/j.isci.2020.101671. eCollection 2020 Nov 20.

本文引用的文献

1
Versatile regulation of multisite protein phosphorylation by the order of phosphate processing and protein-protein interactions.
FEBS J. 2007 Feb;274(4):1046-61. doi: 10.1111/j.1742-4658.2007.05653.x. Epub 2007 Jan 25.
2
Calcium microdomains: organization and function.
Cell Calcium. 2006 Nov-Dec;40(5-6):405-12. doi: 10.1016/j.ceca.2006.09.002. Epub 2006 Oct 9.
3
PKCalpha: a versatile key for decoding the cellular calcium toolkit.
J Cell Biol. 2006 Aug 14;174(4):521-33. doi: 10.1083/jcb.200604033. Epub 2006 Aug 7.
4
Role of cascades in converting oscillatory signals into stationary step-like responses.
Biosystems. 2007 Jan;87(1):58-67. doi: 10.1016/j.biosystems.2006.03.004. Epub 2006 May 3.
5
Models of IP3 and Ca2+ oscillations: frequency encoding and identification of underlying feedbacks.
Biophys J. 2006 May 1;90(9):3120-33. doi: 10.1529/biophysj.105.072249. Epub 2006 Feb 24.
6
Decoding complex Ca2+ signals through the modulation of Ras signaling.
Curr Opin Cell Biol. 2006 Apr;18(2):157-61. doi: 10.1016/j.ceb.2006.02.012. Epub 2006 Feb 20.
7
Microdomains of intracellular Ca2+: molecular determinants and functional consequences.
Physiol Rev. 2006 Jan;86(1):369-408. doi: 10.1152/physrev.00004.2005.
8
A minimal model for decoding of time-limited Ca2+ oscillations.
Biophys Chem. 2006 Apr 1;120(3):161-7. doi: 10.1016/j.bpc.2005.11.005. Epub 2005 Dec 9.
9
Selective regulation of cellular processes via protein cascades acting as band-pass filters for time-limited oscillations.
FEBS Lett. 2005 Oct 24;579(25):5461-5. doi: 10.1016/j.febslet.2005.09.007. Epub 2005 Sep 27.
10
Calcium signaling in liver.
Cell Calcium. 2005 Sep-Oct;38(3-4):329-42. doi: 10.1016/j.ceca.2005.06.009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验