Suppr超能文献

神经元尖峰的幅度变异性和细胞外低通滤波

Amplitude variability and extracellular low-pass filtering of neuronal spikes.

作者信息

Pettersen Klas H, Einevoll Gaute T

机构信息

Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, As, Norway.

出版信息

Biophys J. 2008 Feb 1;94(3):784-802. doi: 10.1529/biophysj.107.111179. Epub 2007 Oct 5.

Abstract

The influence of neural morphology and passive electrical parameters on the width and amplitude of extracellular spikes is investigated by combined analytical and numerical investigations of idealized and anatomically reconstructed pyramidal and stellate neuron models. The main results are: 1), All models yield a low-pass filtering effect, that is, a spike-width increase with increasing distance from soma. 2), A neuron's extracellular spike amplitude is seen to be approximately proportional to the sum of the dendritic cross-sectional areas of all dendritic branches connected to the soma. Thus, neurons with many, thick dendrites connected to soma will produce large amplitude spikes, and therefore have the largest radius of visibility. 3), The spike shape and amplitude are found to be dependent on the membrane capacitance and axial resistivity, but not on the membrane resistivity. 4), The spike-amplitude decay with distance r is found to depend on dendritic morphology, and is decaying as 1/r(n) with 1 <or= n <or= 2 close to soma and n >or= 2 far away.

摘要

通过对理想化和解剖学重建的锥体神经元和星状神经元模型进行联合分析和数值研究,探讨了神经形态和被动电学参数对细胞外尖峰宽度和幅度的影响。主要结果如下:1),所有模型均产生低通滤波效应,即尖峰宽度随距胞体距离的增加而增大。2),神经元的细胞外尖峰幅度被发现与连接到胞体的所有树突分支的树突横截面积之和大致成正比。因此,与胞体相连的树突多且粗的神经元将产生大幅度的尖峰,因此具有最大的可见半径。3),发现尖峰形状和幅度取决于膜电容和轴向电阻率,而不取决于膜电阻率。4),发现尖峰幅度随距离r的衰减取决于树突形态,在靠近胞体处按1/r(n)衰减,其中1≤n≤2,在远处n≥2。

相似文献

1
Amplitude variability and extracellular low-pass filtering of neuronal spikes.
Biophys J. 2008 Feb 1;94(3):784-802. doi: 10.1529/biophysj.107.111179. Epub 2007 Oct 5.
3
Neurons tune to the earliest spikes through STDP.
Neural Comput. 2005 Apr;17(4):859-79. doi: 10.1162/0899766053429390.
4
Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus.
J Neurosci. 1998 May 15;18(10):3919-28. doi: 10.1523/JNEUROSCI.18-10-03919.1998.
5
Extending Integrate-and-Fire Model Neurons to Account for the Effects of Weak Electric Fields and Input Filtering Mediated by the Dendrite.
PLoS Comput Biol. 2016 Nov 28;12(11):e1005206. doi: 10.1371/journal.pcbi.1005206. eCollection 2016 Nov.
6
Conditional spike backpropagation generates burst discharge in a sensory neuron.
J Neurophysiol. 2000 Sep;84(3):1519-30. doi: 10.1152/jn.2000.84.3.1519.
7
Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex.
J Physiol. 1997 Apr 15;500 ( Pt 2)(Pt 2):409-40. doi: 10.1113/jphysiol.1997.sp022031.
8
Spatial localization of synapses required for supralinear summation of action potentials and EPSPs.
J Comput Neurosci. 2004 May-Jun;16(3):251-65. doi: 10.1023/B:JCNS.0000025688.64836.df.
10
How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains.
J Neurosci. 2009 Aug 19;29(33):10234-53. doi: 10.1523/JNEUROSCI.1275-09.2009.

引用本文的文献

2
High-resolution laminar recordings reveal structure-function relationships in monkey V1.
bioRxiv. 2025 May 18:2025.05.14.653875. doi: 10.1101/2025.05.14.653875.
3
4
On the validity of electric brain signal predictions based on population firing rates.
PLoS Comput Biol. 2025 Apr 14;21(4):e1012303. doi: 10.1371/journal.pcbi.1012303. eCollection 2025 Apr.
5
Uncovering population contributions to the extracellular potential in the mouse visual system using Laminar Population Analysis.
PLoS Comput Biol. 2024 Dec 12;20(12):e1011830. doi: 10.1371/journal.pcbi.1011830. eCollection 2024 Dec.
6
Multitask learning of a biophysically-detailed neuron model.
PLoS Comput Biol. 2024 Jul 31;20(7):e1011728. doi: 10.1371/journal.pcbi.1011728. eCollection 2024 Jul.
7
Investigation of a chondroitin sulfate-based bioactive coating for neural interface applications.
J Mater Chem B. 2024 Jun 5;12(22):5535-5550. doi: 10.1039/d4tb00501e.
8
Local contribution to the somatosensory evoked potentials in rat's thalamus.
PLoS One. 2024 Apr 9;19(4):e0301713. doi: 10.1371/journal.pone.0301713. eCollection 2024.
9
Discovering optimal features for neuron-type identification from extracellular recordings.
Front Neuroinform. 2024 Feb 2;18:1303993. doi: 10.3389/fninf.2024.1303993. eCollection 2024.

本文引用的文献

1
Using extracellular action potential recordings to constrain compartmental models.
J Comput Neurosci. 2007 Aug;23(1):39-58. doi: 10.1007/s10827-006-0018-2. Epub 2007 Feb 2.
4
Model of low-pass filtering of local field potentials in brain tissue.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 May;73(5 Pt 1):051911. doi: 10.1103/PhysRevE.73.051911. Epub 2006 May 19.
5
On the origin of the extracellular action potential waveform: A modeling study.
J Neurophysiol. 2006 May;95(5):3113-28. doi: 10.1152/jn.00979.2005. Epub 2006 Feb 8.
6
Large-scale recording of neuronal ensembles.
Nat Neurosci. 2004 May;7(5):446-51. doi: 10.1038/nn1233.
7
Characterization of neocortical principal cells and interneurons by network interactions and extracellular features.
J Neurophysiol. 2004 Jul;92(1):600-8. doi: 10.1152/jn.01170.2003. Epub 2004 Mar 31.
8
Modeling extracellular field potentials and the frequency-filtering properties of extracellular space.
Biophys J. 2004 Mar;86(3):1829-42. doi: 10.1016/S0006-3495(04)74250-2.
9
Multiple microelectrode-recording system for human intracortical applications.
J Neurosci Methods. 2001 Mar 30;106(1):69-79. doi: 10.1016/s0165-0270(01)00330-2.
10
Intracellular features predicted by extracellular recordings in the hippocampus in vivo.
J Neurophysiol. 2000 Jul;84(1):390-400. doi: 10.1152/jn.2000.84.1.390.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验