Suppr超能文献

多任务学习的生物物理细节神经元模型。

Multitask learning of a biophysically-detailed neuron model.

机构信息

Department of Biosciences, University of Oslo, Oslo, Norway.

Department of Physics, Norwegian University of Life Sciences, Ås, Norway.

出版信息

PLoS Comput Biol. 2024 Jul 31;20(7):e1011728. doi: 10.1371/journal.pcbi.1011728. eCollection 2024 Jul.

Abstract

The human brain operates at multiple levels, from molecules to circuits, and understanding these complex processes requires integrated research efforts. Simulating biophysically-detailed neuron models is a computationally expensive but effective method for studying local neural circuits. Recent innovations have shown that artificial neural networks (ANNs) can accurately predict the behavior of these detailed models in terms of spikes, electrical potentials, and optical readouts. While these methods have the potential to accelerate large network simulations by several orders of magnitude compared to conventional differential equation based modelling, they currently only predict voltage outputs for the soma or a select few neuron compartments. Our novel approach, based on enhanced state-of-the-art architectures for multitask learning (MTL), allows for the simultaneous prediction of membrane potentials in each compartment of a neuron model, at a speed of up to two orders of magnitude faster than classical simulation methods. By predicting all membrane potentials together, our approach not only allows for comparison of model output with a wider range of experimental recordings (patch-electrode, voltage-sensitive dye imaging), it also provides the first stepping stone towards predicting local field potentials (LFPs), electroencephalogram (EEG) signals, and magnetoencephalography (MEG) signals from ANN-based simulations. While LFP and EEG are an important downstream application, the main focus of this paper lies in predicting dendritic voltages within each compartment to capture the entire electrophysiology of a biophysically-detailed neuron model. It further presents a challenging benchmark for MTL architectures due to the large amount of data involved, the presence of correlations between neighbouring compartments, and the non-Gaussian distribution of membrane potentials.

摘要

人类大脑在多个层次上运作,从分子到电路,理解这些复杂的过程需要综合的研究努力。模拟具有生物物理细节的神经元模型是研究局部神经电路的一种计算成本高但有效的方法。最近的创新表明,人工神经网络 (ANN) 可以根据尖峰、电势能和光学读数准确预测这些详细模型的行为。虽然这些方法有可能将大规模网络模拟的速度比传统基于微分方程的建模提高几个数量级,但它们目前仅能预测体或少数几个神经元区室的电压输出。我们的新方法基于用于多任务学习 (MTL) 的增强型最先进架构,允许以比经典模拟方法快两个数量级的速度同时预测神经元模型中每个区室的膜电位。通过一起预测所有膜电位,我们的方法不仅允许将模型输出与更广泛的实验记录(膜片钳、电压敏感染料成像)进行比较,还为预测局部场电位 (LFP)、脑电图 (EEG) 信号和脑磁图 (MEG) 信号提供了从基于 ANN 的模拟开始的第一步。虽然 LFP 和 EEG 是一个重要的下游应用,但本文的主要重点在于预测每个区室中的树突电压,以捕获生物物理详细神经元模型的整个电生理学。由于涉及大量数据、相邻区室之间的相关性以及膜电位的非高斯分布,它进一步为 MTL 架构提供了一个具有挑战性的基准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e754/11318869/1587c8120198/pcbi.1011728.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验