Rimehaug Atle E, Dale Anders M, Arkhipov Anton, Einevoll Gaute T
Department of Informatics, University of Oslo, Oslo, Norway.
Department of Neuroscience, University of California San Diego, San Diego, California, USA.
bioRxiv. 2024 Jan 16:2024.01.15.575805. doi: 10.1101/2024.01.15.575805.
The local field potential (LFP), the low-frequency part of the extracellular potential, reflects transmembrane currents in the vicinity of the recording electrode. Thought mainly to stem from currents caused by synaptic input, it provides information about neural activity complementary to that of spikes, the output of neurons. However, the many neural sources contributing to the LFP, and likewise the derived current source density (CSD), can often make it challenging to interpret. Efforts to improve its interpretability have included the application of statistical decomposition tools like principal component analysis (PCA) and independent component analysis (ICA) to disentangle the contributions from different neural sources. However, their underlying assumptions of, respectively, orthogonality and statistical independence are not always valid for the various processes or pathways generating LFP. Here, we expand upon and validate a decomposition algorithm named Laminar Population Analysis (LPA), which is based on physiological rather than statistical assumptions. LPA utilizes the multiunit activity (MUA) and LFP jointly to uncover the contributions of different populations to the LFP. To perform the validation of LPA, we used data simulated with the large-scale, biophysically detailed model of mouse V1 developed by the Allen Institute. We find that LPA can identify laminar positions within V1 and the temporal profiles of laminar population firing rates from the MUA. We also find that LPA can estimate the salient current sinks and sources generated by feedforward input from the lateral geniculate nucleus (LGN), recurrent activity in V1, and feedback input from the lateromedial (LM) area of visual cortex. LPA identifies and distinguishes these contributions with a greater accuracy than the alternative statistical decomposition methods, PCA and ICA. Lastly, we also demonstrate the application of LPA on experimentally recorded MUA and LFP from 24 animals in the publicly available Visual Coding dataset. Our results suggest that LPA can be used both as a method to estimate positions of laminar populations and to uncover salient features in LFP/CSD contributions from different populations.
局部场电位(LFP)是细胞外电位的低频部分,反映记录电极附近的跨膜电流。人们主要认为它源于突触输入引起的电流,它提供了与神经元输出——尖峰信号互补的神经活动信息。然而,对LFP有贡献的众多神经源,以及同样的衍生电流源密度(CSD),常常使其难以解释。为提高其可解释性所做的努力包括应用统计分解工具,如主成分分析(PCA)和独立成分分析(ICA),以厘清不同神经源的贡献。然而,它们分别基于的正交性和统计独立性假设,对于产生LFP的各种过程或通路并不总是有效的。在此,我们扩展并验证了一种名为层状群体分析(LPA)的分解算法,该算法基于生理学而非统计假设。LPA联合利用多单元活动(MUA)和LFP来揭示不同群体对LFP的贡献。为了对LPA进行验证,我们使用了由艾伦脑科学研究所开发的大规模、具有生物物理细节的小鼠初级视觉皮层(V1)模型所模拟的数据。我们发现LPA能够从MUA中识别出V1内的层状位置以及层状群体发放率的时间分布。我们还发现LPA能够估计由外侧膝状体核(LGN)的前馈输入、V1中的循环活动以及视觉皮层的背内侧(LM)区域的反馈输入所产生的显著电流汇和电流源。与主成分分析(PCA)和独立成分分析(ICA)等其他统计分解方法相比,LPA能更准确地识别和区分这些贡献。最后,我们还展示了LPA在公开可用的视觉编码数据集中对24只动物实验记录的MUA和LFP的应用。我们的结果表明,LPA既可以用作估计层状群体位置的方法,也可以用于揭示不同群体在LFP/CSD贡献中的显著特征。