文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于群体放电率的脑电信号预测的有效性

On the validity of electric brain signal predictions based on population firing rates.

作者信息

Ness Torbjørn V, Tetzlaff Tom, Einevoll Gaute T, Dahmen David

机构信息

Department of Physics, Norwegian University of Life Sciences, Ås, Norway.

Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany.

出版信息

PLoS Comput Biol. 2025 Apr 14;21(4):e1012303. doi: 10.1371/journal.pcbi.1012303. eCollection 2025 Apr.


DOI:10.1371/journal.pcbi.1012303
PMID:40228210
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12052147/
Abstract

Neural activity at the population level is commonly studied experimentally through measurements of electric brain signals like local field potentials (LFPs), or electroencephalography (EEG) signals. To allow for comparison between observed and simulated neural activity it is therefore important that simulations of neural activity can accurately predict these brain signals. Simulations of neural activity at the population level often rely on point-neuron network models or firing-rate models. While these simplified representations of neural activity are computationally efficient, they lack the explicit spatial information needed for calculating LFP/EEG signals. Different heuristic approaches have been suggested for overcoming this limitation, but the accuracy of these approaches has not fully been assessed. One such heuristic approach, the so-called kernel method, has previously been applied with promising results and has the additional advantage of being well-grounded in the biophysics underlying electric brain signal generation. It is based on calculating rate-to-LFP/EEG kernels for each synaptic pathway in a network model, after which LFP/EEG signals can be obtained directly from population firing rates. This amounts to a massive reduction in the computational effort of calculating brain signals because the brain signals are calculated for each population instead of for each neuron. Here, we investigate how and when the kernel method can be expected to work, and present a theoretical framework for predicting its accuracy. We show that the relative error of the brain signal predictions is a function of the single-cell kernel heterogeneity and the spike-train correlations. Finally, we demonstrate that the kernel method is most accurate for contributions which are also dominating the brain signals: spatially clustered and correlated synaptic input to large populations of pyramidal cells. We thereby further establish the kernel method as a promising approach for calculating electric brain signals from large-scale neural simulations.

摘要

在群体水平上的神经活动通常通过测量诸如局部场电位(LFP)或脑电图(EEG)信号等脑电信号进行实验研究。为了能够比较观察到的和模拟的神经活动,因此神经活动模拟能够准确预测这些脑电信号非常重要。群体水平上的神经活动模拟通常依赖于点神经元网络模型或发放率模型。虽然这些神经活动的简化表示在计算上是高效的,但它们缺乏计算LFP/EEG信号所需的明确空间信息。已经提出了不同的启发式方法来克服这一限制,但这些方法的准确性尚未得到充分评估。一种这样的启发式方法,即所谓的核方法,此前已得到应用并取得了有希望的结果,并且具有基于脑电信号产生的生物物理学原理的额外优势。它基于为网络模型中的每个突触通路计算发放率到LFP/EEG的核,之后LFP/EEG信号可以直接从群体发放率中获得。这相当于在计算脑电信号的计算量上有了大幅减少,因为脑电信号是针对每个群体而不是每个神经元进行计算的。在这里,我们研究核方法有望在何时以及如何起作用,并提出一个预测其准确性的理论框架。我们表明,脑电信号预测的相对误差是单细胞核异质性和脉冲序列相关性的函数。最后,我们证明核方法对于那些在脑电信号中也占主导地位的贡献最为准确:对大量锥体细胞的空间聚集且相关的突触输入。我们从而进一步将核方法确立为一种从大规模神经模拟中计算脑电信号的有前途的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/911e7837d6ea/pcbi.1012303.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/1faa21d6b00a/pcbi.1012303.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/4f62c4134aeb/pcbi.1012303.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/83d0149d230c/pcbi.1012303.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/f82c7821d1a2/pcbi.1012303.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/a3c6a3ed16e2/pcbi.1012303.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/1f1acca9b9ce/pcbi.1012303.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/31ca6ab92780/pcbi.1012303.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/b56294a34ce6/pcbi.1012303.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/5c543b7a7792/pcbi.1012303.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/fb54e1093fcf/pcbi.1012303.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/35f85a4f613a/pcbi.1012303.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/911e7837d6ea/pcbi.1012303.g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/1faa21d6b00a/pcbi.1012303.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/4f62c4134aeb/pcbi.1012303.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/83d0149d230c/pcbi.1012303.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/f82c7821d1a2/pcbi.1012303.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/a3c6a3ed16e2/pcbi.1012303.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/1f1acca9b9ce/pcbi.1012303.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/31ca6ab92780/pcbi.1012303.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/b56294a34ce6/pcbi.1012303.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/5c543b7a7792/pcbi.1012303.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/fb54e1093fcf/pcbi.1012303.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/35f85a4f613a/pcbi.1012303.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0658/12052147/911e7837d6ea/pcbi.1012303.g012.jpg

相似文献

[1]
On the validity of electric brain signal predictions based on population firing rates.

PLoS Comput Biol. 2025-4-14

[2]
Brain signal predictions from multi-scale networks using a linearized framework.

PLoS Comput Biol. 2022-8

[3]
Computing the Local Field Potential (LFP) from Integrate-and-Fire Network Models.

PLoS Comput Biol. 2015-12-14

[4]
Biophysically detailed forward modeling of the neural origin of EEG and MEG signals.

Neuroimage. 2021-1-15

[5]
A kernel-based method to calculate local field potentials from networks of spiking neurons.

J Neurosci Methods. 2020-10-1

[6]
Multitask learning of a biophysically-detailed neuron model.

PLoS Comput Biol. 2024-7

[7]
A tensor-product-kernel framework for multiscale neural activity decoding and control.

Comput Intell Neurosci. 2014

[8]
Uncovering population contributions to the extracellular potential in the mouse visual system using Laminar Population Analysis.

PLoS Comput Biol. 2024-12-12

[9]
h-Type Membrane Current Shapes the Local Field Potential from Populations of Pyramidal Neurons.

J Neurosci. 2018-6-6

[10]
Computation of the electroencephalogram (EEG) from network models of point neurons.

PLoS Comput Biol. 2021-4

本文引用的文献

[1]
Community-based reconstruction and simulation of a full-scale model of the rat hippocampus CA1 region.

PLoS Biol. 2024-11

[2]
EEG-fMRI in awake rat and whole-brain simulations show decreased brain responsiveness to sensory stimulations during absence seizures.

Elife. 2024-7-8

[3]
Uncovering circuit mechanisms of current sinks and sources with biophysical simulations of primary visual cortex.

Elife. 2023-7-24

[4]
Mean-field based framework for forward modeling of LFP and MEG signals.

Front Comput Neurosci. 2022-10-13

[5]
Large-scale biophysically detailed model of somatosensory thalamocortical circuits in NetPyNE.

Front Neuroinform. 2022-9-22

[6]
Brain signal predictions from multi-scale networks using a linearized framework.

PLoS Comput Biol. 2022-8

[7]
Computing Extracellular Electric Potentials from Neuronal Simulations.

Adv Exp Med Biol. 2022

[8]
Columnar Localization and Laminar Origin of Cortical Surface Electrical Potentials.

J Neurosci. 2022-5-4

[9]
Coherent oscillations in balanced neural networks driven by endogenous fluctuations.

Chaos. 2022-2

[10]
Reduction Methodology for Fluctuation Driven Population Dynamics.

Phys Rev Lett. 2021-7-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索