Suppr超能文献

酿酒酵母在恒化器培养中对锌限制的生理和转录反应。

Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures.

作者信息

De Nicola Raffaele, Hazelwood Lucie A, De Hulster Erik A F, Walsh Michael C, Knijnenburg Theo A, Reinders Marcel J T, Walker Graeme M, Pronk Jack T, Daran Jean-Marc, Daran-Lapujade Pascale

机构信息

Yeast Research Group, Division of Molecular and Life Sciences, University of Abertay, Dundee DD1 1HG, Scotland.

出版信息

Appl Environ Microbiol. 2007 Dec;73(23):7680-92. doi: 10.1128/AEM.01445-07. Epub 2007 Oct 12.

Abstract

Transcriptional responses of the yeast Saccharomyces cerevisiae to Zn availability were investigated at a fixed specific growth rate under limiting and abundant Zn concentrations in chemostat culture. To investigate the context dependency of this transcriptional response and eliminate growth rate-dependent variations in transcription, yeast was grown under several chemostat regimens, resulting in various carbon (glucose), nitrogen (ammonium), zinc, and oxygen supplies. A robust set of genes that responded consistently to Zn limitation was identified, and the set enabled the definition of the Zn-specific Zap1p regulon, comprised of 26 genes and characterized by a broader zinc-responsive element consensus (MHHAACCBYNMRGGT) than so far described. Most surprising was the Zn-dependent regulation of genes involved in storage carbohydrate metabolism. Their concerted down-regulation was physiologically relevant as revealed by a substantial decrease in glycogen and trehalose cellular content under Zn limitation. An unexpectedly large number of genes were synergistically or antagonistically regulated by oxygen and Zn availability. This combinatorial regulation suggested a more prominent involvement of Zn in mitochondrial biogenesis and function than hitherto identified.

摘要

在恒化器培养中,在锌浓度受限和充足的情况下,以固定的比生长速率研究了酿酒酵母对锌可用性的转录反应。为了研究这种转录反应的背景依赖性并消除转录中生长速率依赖性的变化,酵母在几种恒化器培养方案下生长,从而产生了各种碳(葡萄糖)、氮(铵)、锌和氧供应。确定了一组对锌限制始终有反应的强大基因,该组基因能够定义锌特异性Zap1p调控子,其由26个基因组成,其特征是具有比迄今描述的更广泛的锌反应元件共有序列(MHHAACCBYNMRGGT)。最令人惊讶的是参与储存碳水化合物代谢的基因的锌依赖性调控。正如在锌限制下糖原和海藻糖细胞含量大幅下降所表明的那样,它们的协同下调在生理上是相关的。出乎意料的是,大量基因受到氧气和锌可用性的协同或拮抗调控。这种组合调控表明锌在线粒体生物发生和功能中的参与比迄今所确定的更为突出。

相似文献

1
Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures.
Appl Environ Microbiol. 2007 Dec;73(23):7680-92. doi: 10.1128/AEM.01445-07. Epub 2007 Oct 12.
3
Dynamic responses of reserve carbohydrate metabolism under carbon and nitrogen limitations in Saccharomyces cerevisiae.
Yeast. 1999 Feb;15(3):191-203. doi: 10.1002/(SICI)1097-0061(199902)15:3<191::AID-YEA358>3.0.CO;2-O.
4
Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast.
Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):7957-62. doi: 10.1073/pnas.97.14.7957.
7
Acclimation of Saccharomyces cerevisiae to low temperature: a chemostat-based transcriptome analysis.
Mol Biol Cell. 2007 Dec;18(12):5100-12. doi: 10.1091/mbc.e07-02-0131. Epub 2007 Oct 10.
10
Zinc starvation induces a stress response in Saccharomyces cerevisiae that is mediated by the Msn2p and Msn4p transcriptional activators.
FEMS Yeast Res. 2009 Dec;9(8):1187-95. doi: 10.1111/j.1567-1364.2009.00557.x. Epub 2009 Jul 31.

引用本文的文献

1
The application of PEF technology in food processing and human nutrition.
J Food Sci Technol. 2021 Feb;58(2):397-411. doi: 10.1007/s13197-020-04512-4. Epub 2020 May 8.
3
Transcription factors and transporters in zinc homeostasis: lessons learned from fungi.
Crit Rev Biochem Mol Biol. 2020 Feb;55(1):88-110. doi: 10.1080/10409238.2020.1742092. Epub 2020 Mar 19.
4
Identification of the Genetic Requirements for Zinc Tolerance and Toxicity in .
G3 (Bethesda). 2020 Feb 6;10(2):479-488. doi: 10.1534/g3.119.400933.
5
6
The cellular economy of the Saccharomyces cerevisiae zinc proteome.
Metallomics. 2018 Dec 12;10(12):1755-1776. doi: 10.1039/c8mt00269j.
7
An Autophagy-Independent Role for in Sulfur Metabolism During Zinc Deficiency.
Genetics. 2018 Mar;208(3):1115-1130. doi: 10.1534/genetics.117.300679. Epub 2018 Jan 10.
8
Zinc sensing and regulation in yeast model systems.
Arch Biochem Biophys. 2016 Dec 1;611:30-36. doi: 10.1016/j.abb.2016.02.031. Epub 2016 Mar 3.
9
Genome-Wide Transcriptional Response of Saccharomyces cerevisiae to Stress-Induced Perturbations.
Front Bioeng Biotechnol. 2016 Feb 18;4:17. doi: 10.3389/fbioe.2016.00017. eCollection 2016.
10
Environmental Interactions and Epistasis Are Revealed in the Proteomic Responses to Complex Stimuli.
PLoS One. 2015 Aug 6;10(8):e0134099. doi: 10.1371/journal.pone.0134099. eCollection 2015.

本文引用的文献

1
Generic and specific transcriptional responses to different weak organic acids in anaerobic chemostat cultures of Saccharomyces cerevisiae.
FEMS Yeast Res. 2007 Sep;7(6):819-33. doi: 10.1111/j.1567-1364.2007.00242.x. Epub 2007 Apr 30.
2
Transcriptional responses of Saccharomyces cerevisiae to preferred and nonpreferred nitrogen sources in glucose-limited chemostat cultures.
FEMS Yeast Res. 2007 Jun;7(4):604-20. doi: 10.1111/j.1567-1364.2007.00220.x. Epub 2007 Apr 10.
3
Exploiting combinatorial cultivation conditions to infer transcriptional regulation.
BMC Genomics. 2007 Jan 22;8:25. doi: 10.1186/1471-2164-8-25.
4
Repression of ADH1 and ADH3 during zinc deficiency by Zap1-induced intergenic RNA transcripts.
EMBO J. 2006 Dec 13;25(24):5726-34. doi: 10.1038/sj.emboj.7601453. Epub 2006 Nov 30.
5
Regulation of the yeast TSA1 peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc deficiency.
J Biol Chem. 2007 Jan 26;282(4):2184-95. doi: 10.1074/jbc.M606639200. Epub 2006 Nov 22.
7
YKE4 (YIL023C) encodes a bidirectional zinc transporter in the endoplasmic reticulum of Saccharomyces cerevisiae.
J Biol Chem. 2006 Aug 11;281(32):22566-74. doi: 10.1074/jbc.M604730200. Epub 2006 Jun 7.
8
Zinc binding stabilizes mitochondrial Tim10 in a reduced and import-competent state kinetically.
J Mol Biol. 2005 Nov 4;353(4):897-910. doi: 10.1016/j.jmb.2005.09.002. Epub 2005 Sep 20.
9
Heteromeric protein complexes mediate zinc transport into the secretory pathway of eukaryotic cells.
J Biol Chem. 2005 Aug 5;280(31):28811-8. doi: 10.1074/jbc.M505500200. Epub 2005 Jun 16.
10
The splicing of yeast mitochondrial group I and group II introns requires a DEAD-box protein with RNA chaperone function.
Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):163-8. doi: 10.1073/pnas.0407896101. Epub 2004 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验