Knaup Bastian, Kahle Kathrin, Erk Thomas, Valotis Anagnostis, Scheppach Wolfgang, Schreier Peter, Richling Elke
Food Chemistry, University of Wuerzburg, Wuerzburg, Germany.
Mol Nutr Food Res. 2007 Nov;51(11):1423-9. doi: 10.1002/mnfr.200700036.
In order to study the influence of sugar moiety, aglycon structure and microflora concentration on the human ileal hydrolysis of phenol glycosides, various quercetin and p-nitrophenol glycosides were incubated under anaerobic conditions (37 degrees C for 0, 0.5, 1, 2, 4, 6, 8, 10 and 24 h) with ileostomy fluids from three different donors. The glycosides, i.e. beta-D-glucopyranosides, beta-D-galactopyranosides, alpha-L-arabinofuranosides, beta-D-xylopyranosides and alpha-L-rhamnopyranosides as well as the liberated aglycones were identified by HPLC-DAD and HPLC-ESI-MS/MS. Among the quercetin glycosides under study, the 3-O-beta-D-glucopyranoside showed with 0.22 micromol/h the highest hydrolysis rate, followed by the 3-O-beta-D-galactopyranoside, the 3-O-beta-D-xylopyranoside and the 3-O-alpha-L-arabinofuranoside (0.04 and each 0.03 micromol/h, respectively). Quercetin 3-O-alpha-L-rhamnopyranoside was found to be stable for the entire incubation period. Using quercetin 3-O-beta-D-glucopyranoside as a representative example, linear hydrolysis rate was observed from 75 to 2500 microL ileostomy fluid corresponding to its microflora content (log 0.68 up to 21.9 colony forming units). Studies performed in the presence of antibiotics did not reveal any hydrolysis. The p-nitrophenol glycosides were hydrolyzed faster than the corresponding quercetin glycosides. The hydrolysis rate decreased from the beta-D-glucopyranoside (0.41 micromol/h), to the beta-D-galactopyranoside (0.21 micromol/h), the beta-D-xylopyranoside (0.12 micromol/h), the alpha-L-arabinofuranoside (0.09 micromol/h) to the alpha-L-rhamnopyranoside (0.06 micromol/h). These results demonstrate that the human ileal hydrolysis of phenol glycosides depends on the sugar and the aglycon structure as well as the microflora.
为了研究糖基部分、苷元结构和微生物浓度对人回肠中酚苷水解的影响,将各种槲皮素和对硝基酚苷在厌氧条件下(37℃,分别孵育0、0.5、1、2、4、6、8、10和24小时)与来自三个不同供体的回肠造口液一起孵育。通过高效液相色谱 - 二极管阵列检测法(HPLC - DAD)和高效液相色谱 - 电喷雾串联质谱法(HPLC - ESI - MS/MS)鉴定了这些糖苷,即β - D - 吡喃葡萄糖苷、β - D - 吡喃半乳糖苷、α - L - 阿拉伯呋喃糖苷、β - D - 吡喃木糖苷和α - L - 鼠李吡喃糖苷以及释放出的苷元。在所研究的槲皮素苷中,3 - O - β - D - 吡喃葡萄糖苷的水解速率最高,为0.22微摩尔/小时,其次是3 - O - β - D - 吡喃半乳糖苷、3 - O - β - D - 吡喃木糖苷和3 - O - α - L - 阿拉伯呋喃糖苷(分别为0.04微摩尔/小时和0.03微摩尔/小时)。发现槲皮素3 - O - α - L - 鼠李吡喃糖苷在整个孵育期内都很稳定。以槲皮素3 - O - β - D - 吡喃葡萄糖苷为代表性实例,观察到在75至2500微升回肠造口液中,水解速率呈线性变化,这与其微生物含量相关(对数0.68至21.9个菌落形成单位)。在抗生素存在下进行的研究未发现任何水解现象。对硝基酚苷的水解速度比对相应的槲皮素苷更快。水解速率从β - D - 吡喃葡萄糖苷(0.4微摩尔/小时)依次降低至β - D - 吡喃半乳糖苷(0.21微摩尔/小时)、β - D - 吡喃木糖苷(0.12微摩尔/小时)、α - L - 阿拉伯呋喃糖苷(0.09微摩尔/小时)和α - L - 鼠李吡喃糖苷(0.06微摩尔/小时)。这些结果表明,人回肠中酚苷的水解取决于糖基、苷元结构以及微生物。