Suppr超能文献

酿酒酵母转录因子网络中网络基序形成和模块化的进化模型。

Evolutionary models for formation of network motifs and modularity in the Saccharomyces transcription factor network.

作者信息

Ward Jonathan J, Thornton Janet M

机构信息

European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom.

出版信息

PLoS Comput Biol. 2007 Oct;3(10):1993-2002. doi: 10.1371/journal.pcbi.0030198. Epub 2007 Aug 27.

Abstract

Many natural and artificial networks contain overrepresented subgraphs, which have been termed network motifs. In this article, we investigate the processes that led to the formation of the two most common network motifs in eukaryote transcription factor networks: the bi-fan motif and the feed-forward loop. Around 100 million y ago, the common ancestor of the Saccharomyces clade underwent a whole-genome duplication event. The simultaneous duplication of the genes created by this event enabled the origin of many network motifs to be established. The data suggest that there are two primary mechanisms that are involved in motif formation. The first mechanism, enabled by the substantial plasticity in promoter regions, is rewiring of connections as a result of positive environmental selection. The second is duplication of transcription factors, which is also shown to be involved in the formation of intermediate-scale network modularity. These two evolutionary processes are complementary, with the pre-existence of network motifs enabling duplicated transcription factors to bind different targets despite structural constraints on their DNA-binding specificities. This process may facilitate the creation of novel expression states and the increases in regulatory complexity associated with higher eukaryotes.

摘要

许多自然和人工网络都包含过度呈现的子图,这些子图被称为网络模体。在本文中,我们研究了导致真核生物转录因子网络中两种最常见网络模体形成的过程:双扇形模体和前馈环。大约1亿年前,酿酒酵母进化枝的共同祖先经历了一次全基因组复制事件。该事件产生的基因同时复制使得许多网络模体的起源得以确立。数据表明,模体形成涉及两种主要机制。第一种机制是由于启动子区域的显著可塑性,在正向环境选择的作用下连接的重新布线。第二种机制是转录因子的复制,这也被证明与中等规模网络模块性的形成有关。这两个进化过程是互补的,网络模体的预先存在使得复制的转录因子尽管在其DNA结合特异性上存在结构限制,但仍能结合不同的靶标。这个过程可能有助于创造新的表达状态,并增加与高等真核生物相关的调控复杂性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/110c/2041975/fd0ed18e6a5b/pcbi.0030198.g001.jpg

相似文献

1
Evolutionary models for formation of network motifs and modularity in the Saccharomyces transcription factor network.
PLoS Comput Biol. 2007 Oct;3(10):1993-2002. doi: 10.1371/journal.pcbi.0030198. Epub 2007 Aug 27.
2
Network motif-based analysis of regulatory patterns in paralogous gene pairs.
J Bioinform Comput Biol. 2020 Jun;18(3):2040008. doi: 10.1142/S0219720020400089.
4
Transcriptional regulatory networks in Saccharomyces cerevisiae.
Science. 2002 Oct 25;298(5594):799-804. doi: 10.1126/science.1075090.
5
Gene regulatory network growth by duplication.
Nat Genet. 2004 May;36(5):492-6. doi: 10.1038/ng1340. Epub 2004 Apr 11.
7
The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication.
Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):950-4. doi: 10.1073/pnas.0707293105. Epub 2008 Jan 16.
10
A novel motif-discovery algorithm to identify co-regulatory motifs in large transcription factor and microRNA co-regulatory networks in human.
Bioinformatics. 2015 Jul 15;31(14):2348-55. doi: 10.1093/bioinformatics/btv159. Epub 2015 Mar 18.

引用本文的文献

2
The impact of whole genome duplications on the human gene regulatory networks.
PLoS Comput Biol. 2021 Dec 6;17(12):e1009638. doi: 10.1371/journal.pcbi.1009638. eCollection 2021 Dec.
4
Making sense of transcription networks.
Cell. 2015 May 7;161(4):714-23. doi: 10.1016/j.cell.2015.04.014.
6
Identifying emerging motif in growing networks.
PLoS One. 2014 Jun 17;9(6):e99634. doi: 10.1371/journal.pone.0099634. eCollection 2014.
7
The calcineurin signaling network evolves via conserved kinase-phosphatase modules that transcend substrate identity.
Mol Cell. 2014 Aug 7;55(3):422-435. doi: 10.1016/j.molcel.2014.05.012. Epub 2014 Jun 12.
8
SH3 interactome conserves general function over specific form.
Mol Syst Biol. 2013;9:652. doi: 10.1038/msb.2013.9.
9
Horizontal and vertical growth of S. cerevisiae metabolic network.
BMC Evol Biol. 2011 Oct 14;11:301. doi: 10.1186/1471-2148-11-301.
10
Measuring the evolutionary rewiring of biological networks.
PLoS Comput Biol. 2011 Jan 6;7(1):e1001050. doi: 10.1371/journal.pcbi.1001050.

本文引用的文献

1
Activated signal transduction kinases frequently occupy target genes.
Science. 2006 Jul 28;313(5786):533-6. doi: 10.1126/science.1127677.
2
Bacterial regulatory networks are extremely flexible in evolution.
Nucleic Acids Res. 2006 Jul 13;34(12):3434-45. doi: 10.1093/nar/gkl423. Print 2006.
3
Modularity and community structure in networks.
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8577-82. doi: 10.1073/pnas.0601602103. Epub 2006 May 24.
4
Plasticity of the cis-regulatory input function of a gene.
PLoS Biol. 2006 Apr;4(4):e45. doi: 10.1371/journal.pbio.0040045. Epub 2006 Mar 28.
5
Pfam: clans, web tools and services.
Nucleic Acids Res. 2006 Jan 1;34(Database issue):D247-51. doi: 10.1093/nar/gkj149.
6
Spontaneous evolution of modularity and network motifs.
Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13773-8. doi: 10.1073/pnas.0503610102. Epub 2005 Sep 20.
7
The Yeast Gene Order Browser: combining curated homology and syntenic context reveals gene fate in polyploid species.
Genome Res. 2005 Oct;15(10):1456-61. doi: 10.1101/gr.3672305. Epub 2005 Sep 16.
8
Core transcriptional regulatory circuitry in human embryonic stem cells.
Cell. 2005 Sep 23;122(6):947-56. doi: 10.1016/j.cell.2005.08.020.
9
Local regulatory variation in Saccharomyces cerevisiae.
PLoS Genet. 2005 Aug;1(2):e25. doi: 10.1371/journal.pgen.0010025. Epub 2005 Aug 19.
10
An evolutionary and functional assessment of regulatory network motifs.
Genome Biol. 2005;6(4):R35. doi: 10.1186/gb-2005-6-4-r35. Epub 2005 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验