Suppr超能文献

表观遗传染色质沉默:双稳态与前沿传播。

Epigenetic chromatin silencing: bistability and front propagation.

作者信息

Sedighi Mohammad, Sengupta Anirvan M

机构信息

BioMaPS Institute, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA.

出版信息

Phys Biol. 2007 Nov 7;4(4):246-55. doi: 10.1088/1478-3975/4/4/002.

Abstract

The role of post-translational modification of histones in eukaryotic gene regulation is well recognized. Epigenetic silencing of genes via heritable chromatin modifications plays a major role in cell fate specification in higher organisms. We formulate a coarse-grained model of chromatin silencing in yeast and study the conditions under which the system becomes bistable, allowing for different epigenetic states. We also study the dynamics of the boundary between the two locally stable states of chromatin: silenced and unsilenced. The model could be of use in guiding the discussion on chromatin silencing in general. In the context of silencing in budding yeast, it helps us understand the phenotype of various mutants, some of which may be non-trivial to see without the help of a mathematical model. One such example is a mutation that reduces the rate of background acetylation of particular histone side chains that competes with the deacetylation by Sir2p. The resulting negative feedback due to a Sir protein depletion effect gives rise to interesting counter-intuitive consequences. Our mathematical analysis brings forth the different dynamical behaviors possible within the same molecular model and guides the formulation of more refined hypotheses that could be addressed experimentally.

摘要

组蛋白的翻译后修饰在真核基因调控中的作用已得到充分认可。通过可遗传的染色质修饰实现的基因表观遗传沉默在高等生物的细胞命运决定中起主要作用。我们构建了一个酵母染色质沉默的粗粒度模型,并研究该系统变为双稳态从而允许不同表观遗传状态的条件。我们还研究了染色质两种局部稳定状态(沉默和非沉默)之间边界的动态变化。该模型可用于指导关于染色质沉默的一般性讨论。在芽殖酵母的沉默背景下,它有助于我们理解各种突变体的表型,其中一些突变体在没有数学模型帮助的情况下可能难以理解。一个这样的例子是一种突变,它降低了特定组蛋白侧链的背景乙酰化速率,该速率与Sir2p的去乙酰化作用相互竞争。由于Sir蛋白消耗效应产生的负反馈会导致有趣的反直觉结果。我们的数学分析揭示了同一分子模型中可能存在的不同动力学行为,并指导制定更精细的可通过实验验证的假设。

相似文献

1
Epigenetic chromatin silencing: bistability and front propagation.
Phys Biol. 2007 Nov 7;4(4):246-55. doi: 10.1088/1478-3975/4/4/002.
2
SIR proteins and the assembly of silent chromatin in budding yeast.
Annu Rev Genet. 2013;47:275-306. doi: 10.1146/annurev-genet-021313-173730. Epub 2013 Sep 4.
3
Histone Deacetylases with Antagonistic Roles in Saccharomyces cerevisiae Heterochromatin Formation.
Genetics. 2016 Sep;204(1):177-90. doi: 10.1534/genetics.116.190835. Epub 2016 Aug 3.
4
Reconstitution of heterochromatin-dependent transcriptional gene silencing.
Mol Cell. 2009 Sep 24;35(6):769-81. doi: 10.1016/j.molcel.2009.07.030.
6
A nonhistone protein-protein interaction required for assembly of the SIR complex and silent chromatin.
Mol Cell Biol. 2005 Jun;25(11):4514-28. doi: 10.1128/MCB.25.11.4514-4528.2005.
7
Two-way feedback between chromatin compaction and histone modification state explains heterochromatin bistability.
Proc Natl Acad Sci U S A. 2024 Apr 16;121(16):e2403316121. doi: 10.1073/pnas.2403316121. Epub 2024 Apr 9.
8
The Nuts and Bolts of Transcriptionally Silent Chromatin in Saccharomyces cerevisiae.
Genetics. 2016 Aug;203(4):1563-99. doi: 10.1534/genetics.112.145243.
10
Sir3 and epigenetic inheritance of silent chromatin in Saccharomyces cerevisiae.
Mol Cell Biol. 2012 Jul;32(14):2784-93. doi: 10.1128/MCB.06399-11. Epub 2012 May 14.

引用本文的文献

1
Role of diffusion and reaction of the constituents in spreading of histone modification marks.
PLoS Comput Biol. 2024 Jul 11;20(7):e1012235. doi: 10.1371/journal.pcbi.1012235. eCollection 2024 Jul.
2
DNA sequence-dependent formation of heterochromatin nanodomains.
Nat Commun. 2022 Apr 6;13(1):1861. doi: 10.1038/s41467-022-29360-y.
3
Quantifying the Stability of Coupled Genetic and Epigenetic Switches With Variational Methods.
Front Genet. 2021 Jan 22;11:636724. doi: 10.3389/fgene.2020.636724. eCollection 2020.
4
Information integration and decision making in flowering time control.
PLoS One. 2020 Sep 23;15(9):e0239417. doi: 10.1371/journal.pone.0239417. eCollection 2020.
5
Quantifying epigenetic stability with minimum action paths.
Phys Rev E. 2020 Jun;101(6-1):062409. doi: 10.1103/PhysRevE.101.062409.
8
Breaking an epigenetic chromatin switch: curious features of hysteresis in Saccharomyces cerevisiae telomeric silencing.
PLoS One. 2014 Dec 23;9(12):e113516. doi: 10.1371/journal.pone.0113516. eCollection 2014.
9
Systems analysis of high-throughput data.
Adv Exp Med Biol. 2014;844:153-87. doi: 10.1007/978-1-4939-2095-2_8.
10
Mechanistic stochastic model of histone modification pattern formation.
Epigenetics Chromatin. 2014 Oct 27;7(1):30. doi: 10.1186/1756-8935-7-30. eCollection 2014.

本文引用的文献

1
Theoretical analysis of epigenetic cell memory by nucleosome modification.
Cell. 2007 May 18;129(4):813-22. doi: 10.1016/j.cell.2007.02.053.
2
Potential energy landscape and robustness of a gene regulatory network: toggle switch.
PLoS Comput Biol. 2007 Mar 30;3(3):e60. doi: 10.1371/journal.pcbi.0030060. Epub 2007 Feb 14.
4
Single-cell observations reveal intermediate transcriptional silencing states.
Mol Cell. 2006 Jul 21;23(2):219-29. doi: 10.1016/j.molcel.2006.05.035.
5
A bivalent chromatin structure marks key developmental genes in embryonic stem cells.
Cell. 2006 Apr 21;125(2):315-26. doi: 10.1016/j.cell.2006.02.041.
6
Control of developmental regulators by Polycomb in human embryonic stem cells.
Cell. 2006 Apr 21;125(2):301-13. doi: 10.1016/j.cell.2006.02.043.
7
ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON.
Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):553-66. doi: 10.1073/pnas.43.7.553.
8
Self-regulating gene: an exact solution.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov;72(5 Pt 1):051907. doi: 10.1103/PhysRevE.72.051907. Epub 2005 Nov 4.
9
Noise in gene expression: origins, consequences, and control.
Science. 2005 Sep 23;309(5743):2010-3. doi: 10.1126/science.1105891.
10
Optimal path to epigenetic switching.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 1):011902. doi: 10.1103/PhysRevE.71.011902. Epub 2005 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验