Hillman Elizabeth M C
Columbia University, Laboratory for Functional Optical Imaging, Department of Biomedical Engineering, 351ET, 1210 Amsterdam Avenue, New York, New York 10027, USA.
J Biomed Opt. 2007 Sep-Oct;12(5):051402. doi: 10.1117/1.2789693.
Optical brain imaging has seen 30 years of intense development, and has grown into a rich and diverse field. In-vivo imaging using light provides unprecedented sensitivity to functional changes through intrinsic contrast, and is rapidly exploiting the growing availability of exogenous optical contrast agents. Light can be used to image microscopic structure and function in vivo in exposed animal brain, while also allowing noninvasive imaging of hemodynamics and metabolism in a clinical setting. This work presents an overview of the wide range of approaches currently being applied to in-vivo optical brain imaging, from animal to man. Techniques include multispectral optical imaging, voltage sensitive dye imaging and speckle-flow imaging of exposed cortex, in-vivo two-photon microscopy of the living brain, and the broad range of noninvasive topography and tomography approaches to near-infrared imaging of the human brain. The basic principles of each technique are described, followed by examples of current applications to cutting-edge neuroscience research. In summary, it is shown that optical brain imaging continues to grow and evolve, embracing new technologies and advancing to address ever more complex and important neuroscience questions.
光学脑成像历经30年的蓬勃发展,已成长为一个丰富多样的领域。利用光进行的活体成像通过内在对比度对功能变化具有前所未有的敏感性,并且正在迅速利用越来越多的外源性光学造影剂。光可用于在暴露的动物大脑中对微观结构和功能进行活体成像,同时还能在临床环境中对血液动力学和代谢进行无创成像。这项工作概述了目前从动物到人类应用于活体光学脑成像的广泛方法。技术包括多光谱光学成像、电压敏感染料成像以及对暴露皮层的散斑血流成像、活脑的活体双光子显微镜检查,以及用于人类大脑近红外成像的广泛无创地形图和断层扫描方法。描述了每种技术的基本原理,随后列举了当前在前沿神经科学研究中的应用实例。总之,结果表明光学脑成像持续发展演变,接纳新技术并不断进步以解决日益复杂和重要的神经科学问题。