Suppr超能文献

使用多模态非线性光学显微镜对动脉粥样硬化病变进行无标记分子成像。

Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy.

作者信息

Le Thuc T, Langohr Ingeborg M, Locker Matthew J, Sturek Michael, Cheng Ji-Xin

机构信息

Purdue University, Weldon School of Biomedical Engineering, West Lafayette, Indiana 47907.

出版信息

J Biomed Opt. 2007 Sep-Oct;12(5):054007. doi: 10.1117/1.2795437.

Abstract

Arterial tissues collected from Ossabaw swine bearing metabolic syndrome-induced cardiovascular plaques are characterized by multimodal nonlinear optical microscopy that allows coherent anti-Stokes Raman scattering, second-harmonic generation, and two-photon excitation fluorescence imaging on the same platform. Significant components of arterial walls and atherosclerotic lesions, including endothelial cells, extracellular lipid droplets, lipid-rich cells, low-density lipoprotein aggregates, collagen, and elastin are imaged without any labeling. Emission spectra of these components are obtained by nonlinear optical microspectrometry. The nonlinear optical contrast is compared with histology of the same sample. Multimodal nonlinear optical imaging of plaque composition also allows identification of atherosclerotic regions that are vulnerable to rupture risk. The demonstrated capability of nonlinear optical microscopy for label-free molecular imaging of atherosclerotic lesions with 3-D submicrometric resolution suggests its potential application to the diagnosis of atherosclerotic plaques, determination of their rupture risk, and design of individualized drug therapy based on plaque composition.

摘要

从患有代谢综合征诱导的心血管斑块的奥萨巴猪身上采集的动脉组织,通过多模态非线性光学显微镜进行表征,该显微镜可在同一平台上进行相干反斯托克斯拉曼散射、二次谐波产生和双光子激发荧光成像。动脉壁和动脉粥样硬化病变的重要成分,包括内皮细胞、细胞外脂质小滴、富含脂质的细胞、低密度脂蛋白聚集体、胶原蛋白和弹性蛋白,无需任何标记即可成像。这些成分的发射光谱通过非线性光学光谱法获得。将非线性光学对比度与同一样本的组织学进行比较。斑块成分的多模态非线性光学成像还可识别易破裂风险的动脉粥样硬化区域。非线性光学显微镜以三维亚微米分辨率对动脉粥样硬化病变进行无标记分子成像的已证明能力表明,其在动脉粥样硬化斑块诊断、确定其破裂风险以及基于斑块成分设计个体化药物治疗方面具有潜在应用价值。

相似文献

2
Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy.
Arterioscler Thromb Vasc Biol. 2009 Sep;29(9):1342-8. doi: 10.1161/ATVBAHA.109.189316. Epub 2009 Jun 11.
4
Nonlinear magic: multiphoton microscopy in the biosciences.
Nat Biotechnol. 2003 Nov;21(11):1369-77. doi: 10.1038/nbt899.
6
[Nonlinear Microscopy in Ophthalmology: Principles and Pathbreaking Applications].
Klin Monbl Augenheilkd. 2015 Dec;232(12):1365-73. doi: 10.1055/s-0041-109020. Epub 2015 Dec 17.
7
Improving the penetration depth in multiphoton excitation laser scanning microscopy.
J Biomed Opt. 2006 Sep-Oct;11(5):054020. doi: 10.1117/1.2360593.
8
Characterisation of periodically poled materials using nonlinear microscopy.
Opt Express. 2008 Apr 14;16(8):5667-72. doi: 10.1364/oe.16.005667.
9
Dual-pump coherent anti-Stokes-Raman scattering microscopy.
Opt Lett. 2006 Dec 15;31(24):3656-8. doi: 10.1364/ol.31.003656.
10
Dual-detection confocal fluorescence microscopy: fluorescence axial imaging without axial scanning.
Opt Express. 2013 Jul 29;21(15):17839-48. doi: 10.1364/OE.21.017839.

引用本文的文献

2
for an automated quantitative analysis of fibers orientation and organization in biological fibrous tissues.
Front Bioeng Biotechnol. 2025 Jan 6;12:1497837. doi: 10.3389/fbioe.2024.1497837. eCollection 2024.
3
High-content stimulated Raman histology of human breast cancer.
Theranostics. 2024 Jan 27;14(4):1361-1370. doi: 10.7150/thno.90336. eCollection 2024.
4
Azimuth mapping of fibrous tissue in linear dichroism-sensitive photoacoustic microscopy.
Photoacoustics. 2023 May 10;31:100510. doi: 10.1016/j.pacs.2023.100510. eCollection 2023 Jun.
7
Multimodal microscopy for the simultaneous visualization of five different imaging modalities using a single light source.
Biomed Opt Express. 2021 Aug 9;12(9):5452-5469. doi: 10.1364/BOE.430677. eCollection 2021 Sep 1.
8
Optical Imaging of Beta-Amyloid Plaques in Alzheimer's Disease.
Biosensors (Basel). 2021 Jul 29;11(8):255. doi: 10.3390/bios11080255.
10
Coherent Raman scattering microscopy: capable solution in search of a larger audience.
J Biomed Opt. 2021 Jun;26(6). doi: 10.1117/1.JBO.26.6.060601.

本文引用的文献

2
Intrinsic fluorescence and diffuse reflectance spectroscopy identify superficial foam cells in coronary plaques prone to erosion.
Arterioscler Thromb Vasc Biol. 2006 Jul;26(7):1594-600. doi: 10.1161/01.ATV.0000225699.36212.23. Epub 2006 May 4.
4
Reflection spectroscopy of atherosclerotic plaque.
J Biomed Opt. 2006 Mar-Apr;11(2):021005. doi: 10.1117/1.2186332.
5
In vivo Raman spectral pathology of human atherosclerosis and vulnerable plaque.
J Biomed Opt. 2006 Mar-Apr;11(2):021003. doi: 10.1117/1.2190967.
6
Plaque characterization with optical coherence tomography.
J Am Coll Cardiol. 2006 Apr 18;47(8 Suppl):C69-79. doi: 10.1016/j.jacc.2005.10.067.
8
Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure.
Cytometry A. 2006 Jan;69(1):20-6. doi: 10.1002/cyto.a.20196.
9
Fiber-optic fluorescence imaging.
Nat Methods. 2005 Dec;2(12):941-50. doi: 10.1038/nmeth820.
10
Deep tissue two-photon microscopy.
Nat Methods. 2005 Dec;2(12):932-40. doi: 10.1038/nmeth818.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验