Liu Maozi, Amro Nabil A, Liu Gang-yu
Agilent Technologies, Inc., Santa Clara, California 95051, USA.
Annu Rev Phys Chem. 2008;59:367-86. doi: 10.1146/annurev.physchem.58.032806.104542.
This article reveals the enabling aspects of nanografting (an atomic force microscopy-based lithography technique) in surface physical chemistry. First, we characterize self-assembled monolayers and multilayers using nanografting to place unknown molecules into a matrix with known structure or vice versa. The availability of an internal standard in situ allows the unknown structures to be imaged and quantified. The same approaches are applied to reveal the orientation and packing of biomolecules (ligands, DNA, and proteins) upon immobilization on surfaces. Second, nanografting enables systematic investigations of size-dependent mechanics at the nanometer scale by producing a series of designed nanostructures and measuring their Young's modulus in situ. Third, one can investigate systematically the influence of ligand local structure on biorecognition and protein immobilization by precisely engineering ligand nanostructures. Finally, we also demonstrate the regulation of the surface reaction mechanism, kinetics, and products via nanografting.
本文揭示了纳米接枝(一种基于原子力显微镜的光刻技术)在表面物理化学中的赋能作用。首先,我们利用纳米接枝将未知分子置于具有已知结构的基质中,反之亦然,以此来表征自组装单分子层和多分子层。原位内部标准物的可用性使得未知结构能够被成像和量化。同样的方法也被用于揭示生物分子(配体、DNA和蛋白质)在固定于表面时的取向和堆积情况。其次,纳米接枝通过制备一系列设计好的纳米结构并原位测量其杨氏模量,能够在纳米尺度上对尺寸依赖性力学进行系统研究。第三,通过精确设计配体纳米结构,人们可以系统地研究配体局部结构对生物识别和蛋白质固定的影响。最后,我们还展示了通过纳米接枝对表面反应机制、动力学和产物的调控。