Suppr超能文献

一种用于识别导致不同串联质谱(MS/MS)碎裂强度模式的肽结构基序的数据挖掘方案。

A data-mining scheme for identifying peptide structural motifs responsible for different MS/MS fragmentation intensity patterns.

作者信息

Huang Yingying, Tseng George C, Yuan Shinsheng, Pasa-Tolic Ljiljana, Lipton Mary S, Smith Richard D, Wysocki Vicki H

机构信息

Department of Chemistry, University of Arizona, Tucson, Arizona 85721, USA.

出版信息

J Proteome Res. 2008 Jan;7(1):70-9. doi: 10.1021/pr070106u. Epub 2007 Dec 4.

Abstract

Although tandem mass spectrometry (MS/MS) has become an integral part of proteomics, intensity patterns in MS/MS spectra are rarely weighted heavily in most widely used algorithms because they are not yet fully understood. Here a knowledge mining approach is demonstrated to discover fragmentation intensity patterns and elucidate the chemical factors behind such patterns. Fragmentation intensity information from 28 330 ion trap peptide MS/MS spectra of different charge states and sequences went through unsupervised clustering using a penalized K-means algorithm. Without any prior chemistry assumptions, four clusters with distinctive fragmentation patterns were obtained. A decision tree was generated to investigate peptide sequence motif and charge state status that caused these fragmentation patterns. This data-mining scheme is generally applicable for any large data sets. It bypasses the common prior knowledge constraints and reports on the overall peptide fragmentation behavior. It improves the understanding of gas-phase peptide dissociation and provides a foundation for new or improved protein identification algorithms.

摘要

尽管串联质谱法(MS/MS)已成为蛋白质组学不可或缺的一部分,但在大多数广泛使用的算法中,MS/MS 谱图中的强度模式很少被重点考虑,因为它们尚未被完全理解。本文展示了一种知识挖掘方法,用于发现碎片强度模式并阐明这些模式背后的化学因素。来自 28330 个不同电荷状态和序列的离子阱肽 MS/MS 谱图的碎片强度信息,使用惩罚 K 均值算法进行了无监督聚类。在没有任何先验化学假设的情况下,获得了具有独特碎片模式的四个聚类。生成了一个决策树来研究导致这些碎片模式的肽序列基序和电荷状态情况。这种数据挖掘方案通常适用于任何大型数据集。它绕过了常见的先验知识限制,并报告了整体肽碎片行为。它增进了对气相肽解离的理解,并为新的或改进的蛋白质鉴定算法提供了基础。

相似文献

3
MS2PIP: a tool for MS/MS peak intensity prediction.
Bioinformatics. 2013 Dec 15;29(24):3199-203. doi: 10.1093/bioinformatics/btt544. Epub 2013 Sep 27.
5
Utility of characteristic QTOF MS/MS fragmentation for MHC class I peptides.
J Proteome Res. 2011 May 6;10(5):2494-507. doi: 10.1021/pr101272k. Epub 2011 Mar 30.
6
De Novo Sequencing Assisted Approach for Characterizing Mixture MS/MS Spectra.
IEEE Trans Nanobioscience. 2016 Mar;15(2):166-76. doi: 10.1109/TNB.2016.2519841. Epub 2016 Jan 19.
9
Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation.
Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13417-22. doi: 10.1073/pnas.0405549101. Epub 2004 Sep 3.
10
Prediction of peptide fragment ion mass spectra by data mining techniques.
Anal Chem. 2014 Aug 5;86(15):7446-54. doi: 10.1021/ac501094m. Epub 2014 Jul 25.

引用本文的文献

1
The Enzyme Effect: Broadening the Horizon of MS Optimization to Nontryptic Digestion in Proteomics.
J Am Soc Mass Spectrom. 2025 Feb 5;36(2):299-308. doi: 10.1021/jasms.4c00396. Epub 2025 Jan 13.
4
CIDer: A Statistical Framework for Interpreting Differences in CID and HCD Fragmentation.
J Proteome Res. 2021 Apr 2;20(4):1951-1965. doi: 10.1021/acs.jproteome.0c00964. Epub 2021 Mar 17.
5
Quantification of the Effect of Citrulline and Homocitrulline Residues on the Collision-Induced Fragmentation of Peptides.
J Am Soc Mass Spectrom. 2020 Aug 5;31(8):1744-1750. doi: 10.1021/jasms.0c00210. Epub 2020 Jul 6.
6
A Frequency-Based Approach to Predict the Low-Energy Collision-Induced Dissociation Fragmentation Spectra.
ACS Omega. 2020 May 27;5(22):12615-12622. doi: 10.1021/acsomega.9b03935. eCollection 2020 Jun 9.
7
Thorough Performance Evaluation of 213 nm Ultraviolet Photodissociation for Top-down Proteomics.
Mol Cell Proteomics. 2020 Feb;19(2):405-420. doi: 10.1074/mcp.TIR119.001638. Epub 2019 Dec 30.
8
Maximizing Selective Cleavages at Aspartic Acid and Proline Residues for the Identification of Intact Proteins.
J Am Soc Mass Spectrom. 2019 Jan;30(1):34-44. doi: 10.1007/s13361-018-1965-3. Epub 2018 Apr 30.
9
Defining Gas-Phase Fragmentation Propensities of Intact Proteins During Native Top-Down Mass Spectrometry.
J Am Soc Mass Spectrom. 2017 Jun;28(6):1203-1215. doi: 10.1007/s13361-017-1635-x. Epub 2017 Apr 3.
10
Combinatorial Labeling Method for Improving Peptide Fragmentation in Mass Spectrometry.
J Am Soc Mass Spectrom. 2017 Jun;28(6):1216-1226. doi: 10.1007/s13361-017-1606-2. Epub 2017 Mar 27.

本文引用的文献

1
Penalized and weighted K-means for clustering with scattered objects and prior information in high-throughput biological data.
Bioinformatics. 2007 Sep 1;23(17):2247-55. doi: 10.1093/bioinformatics/btm320. Epub 2007 Jun 27.
3
The Orbitrap: a new mass spectrometer.
J Mass Spectrom. 2005 Apr;40(4):430-43. doi: 10.1002/jms.856.
4
Tight clustering: a resampling-based approach for identifying stable and tight patterns in data.
Biometrics. 2005 Mar;61(1):10-6. doi: 10.1111/j.0006-341X.2005.031032.x.
5
Fragmentation pathways of protonated peptides.
Mass Spectrom Rev. 2005 Jul-Aug;24(4):508-48. doi: 10.1002/mas.20024.
6
Prediction of low-energy collision-induced dissociation spectra of peptides.
Anal Chem. 2004 Jul 15;76(14):3908-22. doi: 10.1021/ac049951b.
7
Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry.
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9528-33. doi: 10.1073/pnas.0402700101. Epub 2004 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验